Synthesis of PAH Nucleoside Adducts
A R T I C L E S
Figure 1. Structures of the series 1 and series 2 diol epoxides of BaP.
oligomer via modified solid-phase synthesis procedures.10
Despite being somewhat labor intensive, it is more flexible and
versatile in providing access to any DNA oligomer so long as
synthetic routes are available to the individual diol epoxide-
nucleoside adducts. Although diol epoxides are good electro-
philes, the relatively low nucleophilicity of the nucleoside amino
groups prompts the nucleophile-electrophile role reversal in
our approach. Thus, diol epoxides are either directly converted
to amino triols via amminolysis10a or they are converted to azido
triols via reaction with azide anion, that are then peracylated
and reduced to yield amino triacyl derivatives.11,12 These amino
hydrocarbon derivatives are then coupled with electrophilic
nucleosides to produce the diol epoxide-nucleoside adducts.10
Studies by us and others have led to the understanding that
fluoro nucleosides possess sufficient reactivity to couple with
the sterically hindered, less reactive, bay-region amines.13 We
have used such an approach for the synthesis of DNA adducts
arising by a trans ring-opening of (()-BaP DE-1 and DE-2.14
In contrast to the relatively easy access to the amino triol
derivatives arising by a trans ring-opening of the diol epoxides,
synthesis of the isomeric cis ring-opened amino triols is less
trivial. The latter amino triols are key entities for the synthesis
of nucleoside adducts arising by a cis ring-opening of the diol
Figure 2. Structures of the eight nucleoside adducts (4dA + 4dG) formed
from (()-BaP DE-2.
highly tumorigenic,4 it is likely that the structural features
associated with each covalent adduct influence the biological
outcome. Figure 2 shows the structures of the eight nucleoside
adducts formed from (+)- and (-)-BaP DE-2.
To gain a greater insight into these structure-activity factors,
research has been directed toward the synthesis of DNA
fragments that contain site-specific modifications with stere-
ochemically defined diol epoxide lesions. Such site-specifically
modified DNA are valuable probes for structural studies by
NMR5 and biological experimentation.6 For the synthesis of diol
epoxide adducted DNA three approaches have been adopted:
(a) direct reaction of DNA oligomers with diol epoxides,7 (b)
reaction of DNA containing reactive nucleosides with stere-
ochemically defined hydrocarbon amino triols,8 and (c) synthesis
of individual nucleoside-diol epoxide adducts which are
subsequently introduced into DNA.9,10
(6) For some representative examples see: (a) Kramata, P.; Zajc, B.; Sayer, J.
M.; Jerina, D. M.; Wei, C. S.-J. J. Biol. Chem. 2003, 278, 14940-14948.
(b) Huang, X.; Kolbanovskiy, A.; Wu, X.; Zhang, Y.; Wang, Z.; Zhuang,
P.; Amin, S.; Geacintov, N. E. Biochemistry 2003, 42, 2456-2466. (c)
Xie, Z.; Braithwaite, E.; Guo, D.; Zhao, B.; Geacintov, N. E.; Wang, Z.
Biochemistry 2003, 42, 11253-11262. (d) Zou, Y.; Shell, S. M.; Utzat, C.
D.; Luo, C.; Yang, Z.; Geacintov, N. E.; Basu, A. K. Biochemistry 2003,
42, 12654-12661. (e) Khan, Q. A.; Kohlhagen, G.; Marshall, R.; Austin,
C. A.; Kalena, G. P.; Kroth, H.; Sayer, J. M.; Jerina, D. M.; Pommier, Y.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 12498-12503. (f) Zou, Y.; Ma,
H.; Minko, I. G.; Shell, S. M.; Yang, Z.; Qu, Y.; Xu, Y.; Geacintov, N. E.;
Lloyd, R. S. Biochemistry 2004, 43, 4196-4205. (g) Zang, H.; Harris, T.
M.; Guengerich, F. P. Chem. Res. Toxicol. 2005, 18, 389-400. (h)
Baskunov, V. B.; Subach, F. V.; Kolbanovskiy, A.; Kolbanovskiy, M.;
Eremin, S. A.; Johnson, F.; Bonala, R.; Geacintov, N. E.; Gromova, E. S.
Biochemistry 2005, 44, 1054-1066.
We have been involved with method (c), the total synthesis
approach, wherein individual nucleoside adducts are synthesized
and subsequently introduced into specific sites of any DNA
(3) Jerina, D. M.; Chadha, A.; Cheh, A. M.; Schurdak, M. E.; Wood, A. W.;
Sayer, J. M. In Biological ReactiVe Intermediates IV; Witmer, C. M.,
Snyder, R., Jollow, D. J., Kalf, G. F., Kocsis, J. J., Sipes, I. G., Eds.; Plenum
Press: New York, 1991; pp 533-553.
(4) Jerina, D. M.; Sayer, J. M.; Agarwal, S. K.; Yagi, H.; Levin, W.; Wood,
A. W.; Conney, A. H.; Pruess-Schwartz, D.; Baird, W. M.; Pigott, M. A.;
Dipple, A. In Biological ReactiVe Intermediates III; Kocsis, J. J., Jollow,
D. J., Witmer, C. M., Nelson, J. O., Snyder, R., Eds.; Plenum Press: New
York, 1986; pp 11-30.
(7) (a) Cosman, M.; Ibanez, V.; Geacintov, N. E.; Harvey, R. G. Carcinogenesis
1990, 11, 1667-1672. (b) Mao, B.; Xu, J.; Li, B.; Margulis, L. A.; Smirnov,
S.; Ya, N.-Q.; Courtney, S. H.; Geacintov, N. E. Carcinogenesis 1995, 16,
357-365.
(8) (a) Kim, S. J.; Stone, M. P.; Harris, C. M.; Harris, T. M. J. Am. Chem.
Soc. 1992, 114, 5480-5481. (b) Harris, T. M.; Harris, C. M.; Kim, S. J.;
Han, S.; Kim, H.-Y.; Zhou, L. Polycyclic Aromat. Compd. 1994, 6, 9-16.
(c) DeCorte, B. L.; Tsarouhtsis, D.; Kuchimanchi, S.; Cooper, M. D.;
Horton, P.; Harris, C. M.; Harris. T. M. Chem. Res. Toxicol. 1996, 9, 630-
637. (d) Cooper, M. D.; Hodge, R. P.; Tamura, P. J.; Wilkinson, A. S.;
Harris, C. M.; Harris, T. M. Tetrahedron Lett. 2000, 41, 3555-3558.
(9) (a) Steinbrecher, T.; Becker, A.; Stezowski, J. J.; Oesch, F.; Seidel, A.
Tetrahedron Lett. 1993, 34, 1773-1774. (b) Lee, H.; Luna, E.; Hinz, M.;
Stezowski, J. J.; Kiselyov, A. S.; Harvey, R. G. J. Org. Chem. 1995, 60,
5604-5613.
(5) For a review see: Geacintov, N. E.; Cosman, M.; Hingerty, B. E.; Amin,
S.; Broyde, S.; Patel, D. J. Chem. Res. Toxicol. 1997, 10, 111-146. For
other recent representative examples, see: (a) Sayer, J. M.; Shah, J. H.;
Liang, C.; Xie, G.; Kroth, H.; Yagi, H.; Liu, X.; Yeh, H. J. C.; Jerina, D.
M. Polycyclic Aromat. Compd. 1999, 17, 95-104. (b) Suri, A. K.; Mao,
B.; Amin, S.; Geacintov, N. E.; Patel, D. J. J. Mol. Biol. 1999, 292, 289-
307. (c) Mao, B.; Gu, Z.; Gorin, A.; Chen, J.; Hingerty, B. E.; Amin, S.;
Broyde, S.; Geacintov, N. E.; Patel, D. J. Biochemistry 1999, 38, 10831-
10842. (d) Li, Z. I.; Kim, H.-Y.; Tamura, P. J.; Harris, C. M.; Harris, T.
M.; Stone, M. P. Biochemistry 1999, 38, 2969-2981. (e) Li, Z.; Kim, H.
-Y.; Tamura, P. J.; Harris, C. M.; Harris, T. M.; Stone, M. P. Biochemistry
1999, 38, 14820-14832. (f) Li, Z.; Kim, H.-Y.; Tamura, P. J.; Harris, C.
M.; Harris, T. M.; Stone, M. P. Biochemistry 1999, 38, 16045-16057. (g)
Volk, D. E.; Rice, J. S.; Luxon, B. A.; Yeh, H. J. C.; Liang, C.; Xie, G.;
Sayer, J. M.; Jerina, D. M.; Gorenstein, D. G. Biochemistry 2000, 39,
14040-14053. (h) Pradhan, P.; Tirumala, S.; Liu, X.; Sayer, J. M.; Jerina,
D. M.; Yeh, H. J. C. Biochemistry 2001, 40, 5870-5881. (i) Lin, C. H.;
Huang, X.; Kolbanovskii, A.; Hingerty, B. E.; Amin, S.; Broyde, S.;
Geacintov, N. E.; Patel, D. J. J. Mol. Biol. 2001, 306, 1059-1080. (j) Li,
Z.; Tamura, P. J.; Wilkinson, A. S.; Harris, C. M.; Harris, T. M.; Stone,
M. P. Biochemistry 2001, 40, 6743-6755. (k) Kim, H.-Y. H.; Wilkinson,
A. S.; Harris, C. M.; Harris, T. M.; Stone, M. P. Biochemistry 2003, 42,
2328-2338.
(10) (a) Lakshman, M. K.; Sayer, J. M.; Jerina, D. M. J. Am. Chem. Soc. 1991,
113, 6589-6594. (b) Lakshman, M. K.; Sayer, J. M.; Yagi, H.; Jerina, D.
M. J. Org. Chem. 1992, 57, 4585-4590. (c) Lakshman, M. K.; Sayer, J.
M.; Jerina, D. M. J. Org. Chem. 1992, 57, 3438-3443.
(11) (a) Lakshman, M.; Nadkarni, D. V.; Lehr, R. E. J. Org. Chem. 1990, 55,
4892-4897. (b) Lakshman, M. K.; Chaturvedi, S.; Lehr, R. E. Synth.
Commun. 1994, 24, 2983-2988.
(12) Steinbrecher, T.; Wameling, C.; Oesch, F.; Seidel, A. Angew. Chem., Int.
Ed. Engl. 1993, 32, 404-406.
(13) (a) Lakshman, M.; Lehr, R. E. Tetrahedron Lett. 1990, 31, 1547-1550.
(b) Kim, S. J.; Harris, C. M.; Jung, K.-Y.; Koreeda, M.; Harris, T. M.
Tetrahedron Lett. 1991, 32, 6073-6076.
(14) Chaturvedi, S.; Lakshman, M. K. Carcinogenesis 1996, 17, 2747-2752.
9
J. AM. CHEM. SOC. VOL. 129, NO. 1, 2007 69