W.-H. Chen, Y. Pang / Tetrahedron Letters 50 (2009) 6680–6683
6683
and washed with 5 mL of water. The solid was redissolved in 20 mL of
dichloromethane, washed with 1% EDTA aqueous solution (to remove the
palladium catalyst), and then washed with water. The organic layer was dried
over anhydrous Na2SO4. Removal of solvent afforded the desirable products.
Compound 13a (colorless crystals from ethanol solution, mp 177 ꢀ178 °C) had
the following spectral properties. 1H NMR (CDCl3, 300 MHz) d = 11.49 (s, 1H),
8.16 (s, 1H), 7.76 (m, 1H), 7.64 (m, 1H), 7.52 (dd, 1H, J = 9.0 Hz, 2.4 Hz), 7.42 (m,
2H), 7.03 (d, 1H, J = 9.0 Hz). 13C NMR (CDCl3, 75 MHz) d = 161.7, 157.8, 149.2,
140.0, 136.5, 129.5, 126.0, 125.5, 119.6, 119.6, 112.2, 111.4, 111.0. IR (KBr) mmax
(cmꢀ1): 3060 (w), 1629 (m), 1584 (m), 1541 (s), 1485 (s), 1451 (s), 1279 (s),
1250 (s), 800 (m), 762 (s).
Compound 13b (recrystallized from chloroform, mp 165–166 °C) had the
following spectral properties. 1H NMR (CDCl3, 300 MHz) d = 11.33 (s, 1H), 7.80
(s, 1H), 7.74 (s, 1H), 7.64 (m, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.43 (dd, J = 9.0 Hz,
1.8 Hz, 1H), 7.23 (d, J = 9.0 Hz, 1H), 7.02 (d, J = 9.0 Hz, 1H) 2.36 (s, 3H), 1.40 (s,
9H). 13C NMR (CDCl3, 75 MHz) d = 163.3, 156.7, 148.7, 147.3, 140.2, 134.5,
128.9, 127.0, 123.2, 117.3, 115.9, 110.5, 109.9, 35.2, 31.9, 20.7. IR (KBr) mmax
(cmꢀ1): 3024 (w), 2951 (m), 2864 (w), 1638 (m), 1596 (m), 1547 (s), 1500 (s),
1282 (s), 1256 (s), 1055 (m), 943 (m), 805 (s).
Acknowledgments
Financial support has been provided by The University of Akron
and Coleman endowment. We also wish to thank The National Sci-
ence Foundation (CHE-9977144 and MRI-0821313) for funds used
to purchase the NMR instrument and high resolution ESI mass
spectrometer used in this work.
References and notes
1. Williams, D. L.; Heller, A. J. Phys. Chem. 1970, 74, 4473–4480.
2. Taki, M.; Wolford, J. L.; O’Halloran, T. V. J. Am. Chem. Soc. 2004, 126, 712–713.
3. Ohshima, A.; Momotake, A.; Arai, T. Tetrahedron Lett. 2004, 45, 9377–9381.
4. Chu, Q.; Medvetz, D. A.; Pang, Y. Chem. Mater. 2007, 19, 6421–6429.
5. Vazquez, S. R.; Rodriguez, M. C. R.; Mosquera, M.; Rodriguez-Prieto, F. J. Phys.
Chem. A 2007, 111, 1814–1826.
6. KcKee, M. L.; Kerwin, S. M. Bioorg. Med. Chem. 2008, 16, 1775–1783.
7. Kusumi, T.; Ooi, T.; Walchli, M. R.; Kakisawa, H. J. Am. Chem. Soc. 1988, 110,
2954–2958.
8. Rodriguez, C.; Groot, N. S.; Rimola, A.; Alvarez-Larena, A.; Lloveras, V.; Vidal-
Gancedo, J.; Ventura, S.; Vendrell, J.; Sodupe, M.; Gonzalez-Duarte, P. J. Am.
Chem. Soc. 2009, 131, 1436–1451.
9. Terashima, M.; Ishii, M. Synthesis 1982, 484–485. and references cited therein.
10. Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957, 79, 427–429.
11. So, Y. H.; Heeschen, J. P. J. Org. Chem. 1997, 62, 3552–3561.
12. Chang, J.; Zhao, K.; Pan, S. Tetrahedron Lett. 2002, 43, 951–954.
13. Ohshima, A.; Lkegami, M.; Shinohara, Y.; Momotake, A.; Arai, T. Bull. Chem. Soc.
Jpn. 2007, 80, 561–566.
14. Asada, H.; Ozeki, M.; Fujiwara, M.; Matsushita, T. Polyhedron 2002, 21, 1139–
1148.
15. Praveen, C.; Kumar, K. H.; Muralidharan, D.; Perumal, P. T. Tetrahedron 2008,
64, 2369–2374.
16. Vinsova, J.; Cermakova, K.; Tomeckova, A.; Ceckova, M.; Jampilek, J.; Cermak,
P.; Kunes, J.; Dolezale, M.; Staud, F. Bioorg. Med. Chem. 2006, 14, 5850–5865.
17. Liao, C.-H.; Wang, C.-S.; Sheu, H.-S.; Lai, C. K. Tetrahedron 2008, 64, 7977–7985.
18. Chen, Y.; Zeng, D. X. J. Org. Chem. 2004, 69, 5037–5040.
19. Talapatra, S. K.; Chaudhuri, P.; Talapatra, B. Heterocycles 1980, 14, 1279–1282.
20. Ohshima, A.; Momotake, A.; Nagahata, R.; Arai, T. J. Phys. Chem. A 2005, 109,
9731–9736.
21. Seo, J.; Kim, S.; Lee, Y.-S.; Kwon, O.-H.; Park, K. H.; Choi, S. Y.; Chung, Y. K.; Jang,
J.; Park, S. Y. J. Photochem. Photobiol. A 2007, 191, 51–58.
22. Blacker, A. J.; Farah, M. M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J.
Org. Lett. 2009, 11, 2039–2042.
23. Speier, G. J. Mol. Catal. 1987, 41, 253–260.
24. Chen, Y.-X.; Qian, L.-F.; Zhang, W.; Han, B. Angew. Chem., Int. Ed. 2008, 47,
9330–9333.
25. Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis;
Wiley: New York, 1997.
26. Choudary, B. M.; Reddy, N. P.; Kantam, M. L.; Jam, Z. Tetrahedron Lett. 1985, 26,
6257–6258.
Compound 13c (needle-like crystals from methanol/chloroform, mp 190.5–
191 °C) had the following spectral properties. 1H NMR (CDCl3, 300 MHz)
d = 10.99 (s, 1H), 8.63 (d, J = 2.1 Hz, 1H), 8.36 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 8.04
(dd, J = 7.8 Hz, 1.5 Hz, 1H), 7.73 (d, J = 9 Hz, 1H), 7.52 (dt, 1H, J = 7.8 Hz, 1.5 Hz),
7.16 (d, 1H, J = 7.8 Hz) 7.06 (t, 1H, J = 7.8 Hz). 13C NMR (CDCl3, 75 MHz)
d = 166.0, 159.4, 152.8, 145.9, 140.8, 135.1, 127.6, 121.6, 120.2, 118.0, 115.6,
111.0, 109.6. IR (KBr) mmax (cmꢀ1): 3116 (m, Ph-OH), 1628 (s), 1531 (s, –NO2),
1348 (s, –NO2), 1237 (s, Ph–O–C), 1161 (m), 1044 (m), 808 (m), 758 (m), 733
(m). HRMS (m/z): [M+H]+ calcd for C13H9N2O4, 257.0562; found, 257.0615.
Compound 13d (pale yellow crystals from chloroform, mp 158.5–159.5 °C) had
the following spectral properties. 1H NMR (CDCl3, 300 MHz) d = 11.56 (s, 1H),
8.02 (dd, 1H, J = 7.8 Hz, 1.5 Hz), 7.76 (d, 1H, J = 1.5 Hz,) 7.53 (d, J = 9.0 Hz, 1H),
7.44 (m, 2H), 7.13 (d, 1H, J = 7.8 Hz), 7.01 (t, 1H, J = 7.8 Hz), 1.42 (s, 9H). 13C
NMR (CDCl3, 75 MHz) d = 163.1, 158.8, 148.8, 147.3, 140.1, 133.5, 127.2, 123.3,
119.7, 117.5, 115.9, 110.9, 109.9, 35.2, 31.9. IR (KBr) mmax (cmꢀ1): 2959 (m),
1630 (m), 1591 (m), 1543 (m), 1487 (s), 1257 (s), 1157 (m), 1054 (m), 751 (m).
Compound 13e had the following spectral properties. 1H NMR (CDCl3,
300 MHz) d = 11.08 (s, 1H), 8.55 (d, J = 2.1 Hz, 1H), 8.40 (dd, 1H, J = 9.0 Hz,
2.1 Hz,), 8.19 (d, 1H, J = 2.4 Hz) 7.86 (d, J = 9.0 Hz, 1H), 7.60 (dd, 1H, J = 9.0 Hz,
2.4 Hz), 7.06 (d, 1H, J = 9.0 Hz). 13C NMR (CDCl3, 75 MHz) d = 163.3, 158.3,
152.7, 142.7, 140.7, 137.7, 129.8, 128.3, 122.0, 120.0, 115.8, 111.9, 111.2. IR
(KBr) m
max (cmꢀ1): 3108 (m), 1630 (m), 1547 (m), 1532 (s), 1482 (m), 1345 (s),
1248 (m), 1047 (m), 811 (m). HMRS (m/z): [M+H]+ calcd for C13H8BrN2O4,
334.9667; found, 334.9787.
30. Fossey, J.; Richards, C. J. Organometallics 2002, 21, 5259–5264.
31. Synthesis of 14: 4-Bromo-2,6-diformylphenol (100 mg, 0.44 mmol), prepared
from p-bromophenol by following the literature procedure (Synthesis 1998, 7,
1029–1032), and 2-aminophenol (96 mg, 0.88 mmol) were refluxed in absolute
ethanol (15 mL) for 5 h. The reaction mixture was cooled to room temperature,
and the precipitate was filtered and crystallized from absolute ethanol to give
the compound 14 as reddish needle-like crystals (mp 292–293 °C). 1H NMR
(CDCl3, 300 MHz) d = 8.78 (s, 2H), 7.79 (s, 2H), 7.04 (d, 2H, J = 7.8 Hz), 6.90 (t,
2H, J = 7.8 Hz), 6.76 (d, 2H, J = 7.8 Hz), 6.65 (t, 2H, J = 7.8 Hz).
32. Compound 15 was prepared by using the same procedure as for 13, and
27. Muzart, J. Tetrahedron 2003, 59, 5789–5816.
purified on a silica gel column with dichloromethane as an eluent. The
28. Sridharan, V.; Muthusubramanian, S.; Sivasubramanian, S. Magn. Reson. Chem.
2003, 41, 291–295.
compound 15 had the following spectral properties. 1H NMR (CDCl3, 300 MHz)
d = 12.95 (s, 1H), 8.42 (s, 2H), 7.83 (m, 2H), 7.67 (m, 2H), 7.43 (m, 4H). 13C NMR
(CDCl3, 75 MHz) d = 160.4, 156.7, 149.9, 140.8, 134.6, 126.2, 125.3, 120.3,
115.9, 111.4, 111.0. HRMS (m/z) calcd for [C20H11BrN2O3 + Na]+, 428.9851.
Found: 428.9885. IR (KBr) mmax (cmꢀ1): 3061 (w), 3027 (w), 1628 (w), 1536
(m), 1441 (s), 1248 (s), 1158 (m), 842 (m), 772 (m), 740 (m). The by-product 16
had the following spectral properties. 1H NMR (CDCl3, 300 MHz) d = 12.22 (s,
1H), 10.5 (s, 1H, CHO), 8.38 (s, 1H), 8.03 (s, 1H), 7.78 (m, 1H), 7.64 (m, 1H), 7.44
(m, 2H).
29. A typical procedure for the preparation of 13: To a 10 mL round-bottomed flask
equipped with a side arm, a magnetic stirring bar, and a connecting tube were
added the Schiff base 12 (0.2 mmol), Pd(OAc)2 (2.3 mg, 0.01 mmol), Cs2CO3
(130 mg, 0.4 mmol), and 10 mL DMF. The mixture was stirred at room
temperature for 5 min, then warmed to 80 °C, while the oxygen gas was
bubbled into the flask below the surface of the liquid. The progress of the
reaction was monitored by 1H NMR spectroscopy, which revealed the
disappearance of the imine resonance signal at around d 8.8 ppm when the
reaction was complete. Upon completion of the reaction, the mixture was
poured into 20 mL of water. The precipitate was collected by vacuum filtration
33. Simandi, L. I.; Barna, T. M.; Korecz, L.; Rockenbauer, A. Tetrahedron Lett. 1993,
34, 717–720.