ChemComm
Communication
of tris(dimethylamino)phosphine and a-ketoester toward in situ
formed carbamic acid, the condensation reaction can be easily
carried out using atmospheric carbon dioxide under mild reaction
conditions. Further mechanistic investigations and extension of
this strategy to other reactions involving carbon dioxide incorpora-
tion are ongoing in our laboratory.
This work was supported by the National Natural Science
Foundation of China (21172026), and the Scientific Research
Fund of Liaoning Provincial Education Department (No. L2012024).
X.-B. L. gratefully acknowledges the Chang Jiang Scholars
Program (no. T2011056) from Ministry of Education of the
People’s Republic of China.
Fig. 1 ORTEP plot of 5n shown with ellipsoids at the 30% probability level;
most hydrogen atoms are omitted for clarity.
Table 2 Synthesis of oxazolidine-2,4-diones from benzyl amine, atmo-
spheric carbon dioxide and various a-ketoester (2)a
Notes and references
1 (a) M. S. Aapro, D. S. Alberts and S. E. Salmon, Cancer Chemother.
Pharmacol., 1983, 10, 161; (b) B. J. Takasugi, S. E. Salmon,
R. L. Nelson, L. Young and R. M. Liu, Invest. New Drugs, 1984, 2, 49.
2 J. M. Cox, H. D. Chu, C. Yang, H. C. Shen, Z. Wua, J. Balsells, A. Crespo,
P. Brown, B. Zamlynny, J. Wiltsie, J. Clemas, J. Gibson, L. Contino,
J. M. Lisnock, G. Zhou, M. Garcia-Calvo, T. Bateman, L. Xu, X. Tong,
M. Crook and P. Sinclair, Bioorg. Med. Chem. Lett., 2014, 24, 1681.
3 (a) R. C. Schnur and M. Morville, J. Med. Chem., 1986, 29, 770;
(b) R. L. Dow, B. M. Bechle, T. T. Chou, D. A. Clark, B. Hulin and
R. W. Stevenson, J. Med. Chem., 1991, 34, 1538; (c) Y. Momose,
T. Maekawa, T. Yamano, M. Kawada, H. Odaka, H. Ikeda and
T. Sohda, J. Med. Chem., 2002, 45, 1518.
4 R. T. Lewis, A. M. Macleod, K. J. Merchant, F. Kelleher, I. Sanderson,
R. H. Herbert, M. A. Cascieri, S. Sadowski, R. G. Ball and K. Hoogstee,
J. Med. Chem., 1995, 38, 923.
5 K. Evason, C. Huang, I. Yamben, D. F. Covey and K. Kornfeld,
Science, 2005, 307, 258.
6 For reviews, see: (a) J. Louie, Curr. Org. Chem., 2005, 9, 605; (b) M. Mori,
Eur. J. Org. Chem., 2007, 4981; (c) T. Sakakura, J.-C. Choi and H. Yasuda,
Chem. Rev., 2007, 107, 2365; (d) M. Aresta and A. Dibenedetto, Dalton
Trans., 2007, 2975; (e) A. Correa and R. Martin, Angew. Chem., Int. Ed.,
2009, 48, 6201; ( f ) S. N. Riduan and Y. Zhang, Dalton Trans., 2010,
39, 3347; (g) A. Behr and G. Henze, Green Chem., 2011, 13, 25;
(h) K. Huang, C.-L. Sun and Z.-J. Shi, Chem. Soc. Rev., 2011, 40, 2435;
(i) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann and F. E. Kuhn,
Angew. Chem., Int. Ed., 2011, 50, 8510; ( j) X.-B. Lu and D. J. Darensbourg,
Chem. Soc. Rev., 2012, 41, 1462; (k) W.-Z. Zhang and X.-B. Lu, Chin.
J. Catal., 2012, 33, 745; (l) Y. Tsuji and T. Fujihara, Chem. Commun.,
2012, 48, 9956; (m) L. Zhang and Z. Hou, Chem. Sci., 2013, 4, 3395;
(n) N. Kielland, C. J. Whiteoak and A. W. Kleij, Adv. Synth. Catal., 2013,
355, 2115; (o) M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev.,
2014, 114, 1709.
7 For the selected examples, see: (a) M. Shi and K. M. Nicholas, J. Am.
Chem. Soc., 1997, 119, 5057; (b) T. Mita, J. Chen, M. Sugawara and
Y. Sato, Angew. Chem., Int. Ed., 2011, 50, 1393; (c) K. Ukai, M. Aoki,
J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2006, 128, 8706;
(d) T. Ohishi, M. Nishiura and Z. Hou, Angew. Chem., Int. Ed.,
2008, 47, 5792; (e) C. S. Yeung and V. M. Dong, J. Am. Chem. Soc.,
2008, 130, 7826; ( f ) L. J. Goossen, N. Rodriguez, F. Manjolinho and
P. P. Lange, Adv. Synth. Catal., 2010, 352, 2913; (g) D. Yu and
Y. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 20184;
(h) J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2008, 130, 15254;
(i) C. M. Williams, J. B. Johnson and T. Rovis, J. Am. Chem. Soc.,
2008, 130, 14936; ( j) S. Li, W. Yuan and S. Ma, Angew. Chem., Int.
Ed., 2011, 50, 2578; (k) T. Fujihara, T. Xu, K. Semba, J. Terao and
Y. Tsuji, Angew. Chem., Int. Ed., 2011, 50, 523; (l) L. Zhang, J. Cheng,
B. Carry and Z. Hou, J. Am. Chem. Soc., 2012, 134, 14314;
(m) T. Fujihara, Y. Tani, K. Semba, J. Terao and Y. Tsuji, Angew.
Chem., Int. Ed., 2012, 51, 11487; (n) T. G. Ostapowicz, M. Schmitz,
M. Krystof, J. Klankermayer and W. Leitner, Angew. Chem., Int. Ed.,
2013, 52, 12119; (o) I. I. F. Boogaerts and S. P. Nolan, J. Am. Chem.
Soc., 2010, 132, 8858; (p) L. Zhang, J. Cheng, T. Ohishi and Z. Hou,
Angew. Chem., Int. Ed., 2010, 49, 8670; (q) H. Mizuno, J. Takaya and
N. Iwasawa, J. Am. Chem. Soc., 2011, 133, 1251; (r) K. Sasano,
J. Takaya and N. Iwasawa, J. Am. Chem. Soc., 2013, 135, 10954;
a
Reaction conditions: benzyl amine (1.2 mmol), a-ketoester 2 (1.0 mmol),
carbon dioxide (1 atm), THF (10 mL), À78 1C to rt, 1.5 h; then NaOMe
(0.1 mmol), toluene, 110 1C, 1 h. Yields of isolated products are given.
X-ray diffraction (Fig. 1).17 The presence of the bromo groups in
5g and 5o provides a handle for further functionalization using
traditional methods such as cross-coupling reactions. As expected,
primary aliphatic amines are also found to be suitable substrates
(5q–t), and the cyclopropyl group is compatible with the reaction
conditions (5t).
Moreover, the tandem condensation–cyclization reaction of
benzyl amine, atmospheric carbon dioxide and several a-ketoesters
can also be carried out (Table 2). The use of alkyl, chloro and fluoro
substituted ethyl benzoylformates leads to the formation of the
corresponding oxazolidine-2,4-dione products in moderate to good
yields (5u–v, 5x–y). The more electron-rich substrates including
methoxy substituted ethyl benzoylformate (2w) and alkyl substituted
a-ketoester (2z) are inert under these conditions. The reactions of
these two substrates at increased temperature (60 1C) gave complex
mixtures and no desired carbamate products were detected in the
condensation step.
In summary, we have developed a novel, convenient, and
transition-metal-free access to biologically important oxazolidine-
2,4-diones via a phosphorus-mediated carboxylative condensation
of readily available primary amines and a-ketoesters using carbon
dioxide as a carboxylative reagent, and a NaOMe-catalyzed cycliza-
tion sequence in a one-pot fashion. Due to the high nucleophilic
affinity of the Kukhtin–Ramirez adduct formed by the reaction
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 6175--6178 | 6177