Ch. Raji Reddy et al. / Tetrahedron Letters 48 (2007) 215–218
217
1689; (c) Frost, C. G.; Howarth, J.; Williams, J. M. J.
Tetrahedron: Asymmetry 1992, 3, 1089; (d) Tsuji, J.
Transition Metal Reagents and Catalysts; Wiley: New York,
2000.
O
CO2Et
O N
2. (a) Miyabe, H.; Yoshida, K.; Yamaguchi, M.; Takemoto,
Y. J. Org. Chem. 2005, 70, 2148; (b) Miyabe, H.; Matsu-
mura, A.; Moriyama, K.; Takemoto, Y. Org. Lett. 2004, 6,
4631; (c) Miyabe, H.; Yoshida, K.; Matsumura, A.;
Yamaguchi, M.; Takemoto, Y. Synlett 2003, 567.
3. (a) Ishikawa, T.; Kawakami, M.; Fukui, M.; Yamashita,
A.; Urano, J.; Saito, S. J. Am. Chem. Soc. 2001, 123, 7734;
(b) Yang, D.; Zhang, Y.-H.; Li, B.; Zhang, D.-W. J. Org.
Chem. 2004, 69, 7577.
O
1c
N H H O
.
2
4
2
CH2Cl2:MeOH (1:1)
rt
CO2Et
O NH2
1d
4. (a) Basavaiah, D.; Satyanarayana, T. Chem. Commun.
2004, 32; (b) Basavaiah, D.; Rao, A. J.; Satyanarayana,
T. Chem. Rev. 2003, 103, 811; (c) Frank, S. A.;
Mergott, D. J.; Rousch, W. R. J. Am. Chem. Soc. 2002,
124, 2404; (d) Yang, K.-S.; Chen, K. Org. Lett. 2000, 2,
729; (e) Drews, S. E.; Ross, G. H. P. Tetrahedron 1988, 44,
4653.
5. (a) Kabalka, G. W.; Dong, G.; Venkataiah, B.; Chen, C. J.
Org. Chem. 2005, 70, 9207; (b) Seung, C. K.; Gowrisankar,
S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 799; (c)
Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621;
(d) Saxena, R.; Patra, A.; Batra, S. Synlett 2003, 1439; (e)
Shanmugam, P.; Singh, P. R. Synlett 2001, 1314.
6. (a) Chandrasekhar, S.; Saritha, B.; Jagadeeshwar, V.;
Narsihmulu, Ch.; Vijay, D.; Sarma, G. D.; Jagadeesh, B.
Tetrahedron Lett. 2006, 47, 2981; (b) Chandrasekhar, S.;
Chandrasekhar, G.; Vijeender, K.; Reddy, M. S. Tetra-
hedron Lett. 2006, 47, 3475; (c) Chandrasekhar, S.; Basu,
D.; Rambabu, Ch. Tetrahedron Lett. 2006, 47, 3059.
7. (a) The (E)-stereochemistry of 1c was assigned on the basis
of 1H and 13C NMR chemical shifts in comparison with
literature values.8 The structure was supported by NOE
cross peaks between H7–H9, H1–H16 and H1–H17.
Spectral data for 1c: Off white solid; mp 74–78 °C; 1H
NMR (500 MHz, CDCl3): d 8.13 (1H, s, H1), 7.83 (2H, dd,
J = 3.5, 5.5 Hz, H11, 14), 7.73 (2H, dd, J = 3.5, 5.5 Hz,
H12, 13), 7.70 (2H, d, J = 7.0 Hz, H3, 7), 7.43–7.45 (3H, m,
H4, 5, 6), 5.11 (2H, s, H9), 4.28 (2H, q, J = 7.0 Hz, H16),
1.32 (3H, t, J = 7.0 Hz, H17); 13C NMR (75 MHz, CDCl3);
d 166.7, 163.2, 148.1, 134.3, 133.8, 129.9, 129.8, 128.7,
128.6, 125.4, 123.3, 71.5, 61.3, 14.0. IR (CHCl3): m 1727,
1620, 1106, 794 cmÀ1; LC MS (m/z): 352 (M+H)+; HRMS
(EI): m/z Calcd for C20H18NO5 352.1185 [M+H]+. Found
352.1181.
aq. NaHCO3
Ph-CHO
DCM, rt
Piv-Cl, DCM, rt
CO2Et
O N
CO2Et
O NHPiv
1f
Ph
1e
Scheme 2.
corresponding product, 2c in 71% yield with exclusive
(E)-selectivity (entry 2).7 To prove the generality of the
method, we reacted other Baylis–Hillman acetate
adducts with N-hydroxyphthalimide 1b and succinimide
2b (entries 3–11). The results are summarized in Table 1.
In all cases, the reaction proceeded smoothly and affor-
ded the products in reasonably good yields with good
selectivity. As shown in Table 1, Baylis–Hillman acetate
adducts derived from ethyl acrylate gave the correspond-
ing products having the aryl group trans to the ester,
whereas the adducts derived from acrylonitrile gave
products having the aryl group cis to the nitrile. The
1
olefin geometry was established based on H and 13C
NMR chemical shifts and by comparison with literature
values.8 However, reaction with N-Boc-hydroxylamine
and N-benzyl hydroxylamine gave low yields of the
desired products with (E)-selectivity (entries 12 and 13).
We also investigated the transformations of 1c into use-
ful substituted allyloxy amine/aminoxy ester 1d and its
derivatives 1e and 1f (Scheme 2). Further applications
of these products to prepare pseudo-c-amino acids are
underway.
17
CH3
H
H
16
O
In conclusion, we have developed a palladium-catalyzed
addition of hydroxylamine derivatives to Baylis–Hill-
man acetate adducts.9 The selective formation of substi-
tuted allyloxy amine products was observed and these
products may find use in organic synthesis.
H
H
H
2
O
H
3
1
8
O
11
10
15
H
9
H
12
O
N
7
H
H
4
H
H
13
14
6
5
H
O
H
1c
(b) The structure was supported by NOE cross peaks
Acknowledgements
between H1–H3 and H1–H9. Spectral data for 2c: Off white
1
solid; mp 158–161 °C H NMR (500 MHz, CDCl3): d 7.85
N.K., G.S.K.B. and G.D.S. thank CSIR and UGC,
New Delhi, for financial assistance.
(2H, dd, J = 3.0, 5.38 Hz, H11, 14), 7.82–7.80 (2H, m, H3,
7), 7.76 (2H, dd, J = 3.0, 5.38 Hz, H12, 13), 7.44 (3H, dd,
J = 2.1, 5.1 Hz H4, 5, 6), 7.37 (1H, s, H1), 4.93 (2H, s, H9);
13C NMR (75 MHz, CDCl3): d 163.3, 149.7, 134.7, 132.4,
131.4, 129.4, 128.9, 128.7, 123.7, 117.2, 104.7, 78.5. IR
(CHCl3): m 2230, 1725, 1502, 1219, 771 cmÀ1; LC MS (m/z):
327 (M+Na)+; HRMS (EI): m/z Calcd for C18H12N2O3Na
327.0746 [M+Na]+. Found 327.0749.
References and notes
1. (a) Trost, B. M.; Crawly, M. L. Chem. Rev. 2003, 103, 2921;
(b) Johannsen, M.; Jorgenson, K. A. Chem. Rev. 1998, 98,