Please do not adjust margins
Green Chemistry
Page 6 of 8
COMMUNICATION
Journal Name
Q. L. Meng, M. Q. Hou, H. Z. Liu, J. L. SDonOgI: a10n.d10B39. /XC.9HGaCn0,16N2a7tA.
Commun., 2017, 8, 8; Z. Cao, M. Dierks, M. T. Clough, I. B. Daltro
de Castro and R. Rinaldi, Joule, 2018, 2, 1118-1133; S. Song, J.
Zhang, G. Gözaydın and N. Yan, Angew. Chem., Int. Ed., 2019,
58, 4934-4937; L. Dong, L. Lin, X. Han, X. Si, X. Liu, Y. Guo, F. Lu,
S. Rudić, S. F. Parker, S. Yang and Y. Wang, Chem, 2019, Doi:
10.1016/j.chempr.2019.03.007; W. Deng, Y. Wang, S. Zhang, K.
M. Gupta, M. J. Hülsey, H. Asakura, L. Liu, Y. Han, E. M. Karp, G.
T. Beckham, P. J. Dyson, J. Jiang, T. Tanaka, Y. Wang and N. Yan,
Proc. Natl. Acad. Sci. U.S.A., 2018, 115, 5093-5098; L. Tao, T.-H.
Yan, W. Li, Y. Zhao, Q. Zhang, Y.-M. Liu, M. M. Wright, Z.-H. Li,
H.-Y. He and Y. Cao, Chem, 2018, 4, 2212-2227.
Conclusions
Jet fuel range polycycloalkanes were selectively synthesized at
high overall yield (~80%) by the methanolysis of PC waste,
followed by the HDO. Methanol was found to be highly
reactive for the alcoholysis of PC waste. In the absence of
catalyst, high yield (~90%) of bisphenol A was achieved from
the methanolysis of PC waste after the reaction was carried
out at 453 K for 3 h. Subsequently, the bisphenol A was further
hydrodeoxygenated to jet fuel range C15 bicycloalkanes under
the co-catalysis of activated carbon loaded noble metal and
acidic zeolites. Among the investigated catalyst systems, the
combination of Pt/C and H-β (denotes as Pt/C + H-β) exhibited
the best performance, which can be rationalized by the high
activity of Pt/C for hydrogenation of benzene ring, the high
pore size and acidity of H-β zeolite. The Pt/C + H-β catalyst is
also applicable for the synthesis of C13-C15 polycycloalkanes
with the bisphenols which can be derived from lignocellulose.
The C13-C15 polycycloalkanes as obtained have higher densities.
As a potential application, they can be used as advanced
aviation fuels or fuel additives to improve the volumetric heat
value of current jet fuels.
2
R. Geyer, J. R. Jambeck and K. L. Law, Science Advances, 2017, 3,
e1700782.
3
4
D. Paszun and T. Spychaj, Ind. Eng. Chem. Res., 1997, 36, 1373-
1383; F. Zhang, J. Chen, P. Chen, Z. Sun and S. Xu, AIChE J.,
2012, 58, 1853-1861; Y. Huang, Y. Ma, Y. Cheng, L. Wang and
X. Li, Ind. Eng. Chem. Res., 2014, 53, 4604-4613; B. Geyer, G.
Lorenz and A. Kandelbauer, Express Polym. Lett., 2016, 10, 559-
586; L. Gu and T. Ozbakkaloglu, Waste Manage., 2016, 51, 19-
42; B. G. Mwanza and C. Mbohwa, Procedia Manufacturing,
2017, 8, 649-656; A. Rahimi and J. M. García, Nat. Rev. Chem.,
2017, 1, 0046; R. Koshti, L. Mehta and N. Samarth, J. Polym.
Environ., 2018, 26, 3520-3529; S. Jian, L. Dajiang, Y. R. P., C. A.
G., I. N. G., S. Timo, C. J. R., S. B. A. and S. Seema,
ChemSusChem, 2018, 11, 781-792; Y.-B. Zhao, X.-D. Lv and H.-G.
Ni, Chemosphere, 2018, 209, 707-720.
H. S. Chung, C. S. H. Chen, R. A. Kremer, J. R. Boulton and G. W.
Burdette, Energy Fuels, 1999, 13, 641-649;X. Zhang, L. Pan, L.
Wang and J.-J. Zou, Chem. Eng. Sci., 2018, 180, 95-125.
T. Do, E. R. Baral and J. G. Kim, Polymer, 2018, 143, 106-114.
C.-H. Wu, L.-Y. Chen, R.-J. Jeng and S. A. Dai, ACS Sustainable
Chem. Eng., 2018, 6, 8964-8975.
Conflicts of interest
There are no conflicts to declare.
5
6
7
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (no. 21690082; 21776273; 21721004),
DNL Cooperation Fund, CAS (DNL180301), the Strategic
Priority Research Program of the Chinese Academy of Sciences
(XDB17020100, XDA 21060200), the National Key Projects for
Fundamental Research and Development of China
8
J. S. Siracusa, L. Yin, E. Measel, S. Liang and X. Yu, Reproductive
Toxicology, 2018, 79, 96-123; A. Ullah, M. Pirzada, S. Jahan, H.
Ullah, G. Shaheen, H. Rehman, M. F. Siddiqui and M. A. Butt,
Chemosphere, 2018, 209, 508-516.
E. V. Antonakou, K. G. Kalogiannis, S. D. Stefanidis, S. A.
Karakoulia, K. S. Triantafyllidis, A. A. Lappas and D. S. Achilias,
Polym. Degrad. Stab., 2014, 110, 482-491.
9
10 X. Song, F. Liu, L. Li, X. Yang, S. Yu and X. Ge, J. Hazard. Mater.,
2013, 244-245, 204-208; F.-S. Liu, Z. Li, S.-T. Yu, X. Cui, C.-X.
Xie and X.-P. Ge, J. Polym. Environ., 2009, 17, 208; G. Grause, R.
Kärrbrant, T. Kameda and T. Yoshioka, Ind. Eng. Chem. Res.,
2014, 53, 4215-4223.
(2016YFA0202801),
Distinguished Young Scholars (no. 2015R005).
Dalian
Science
Foundation
for
11 L. C. Hu, A. Oku and E. Yamada, Polymer, 1998, 39, 3841-3845;
R. Piñero, J. García and M. J. Cocero, Green Chem., 2005, 7, 380-
387; F. Liu, Z. Li, S. Yu, X. Cui and X. Ge, J. Hazard. Mater.,
2010, 174, 872-875; F. Liu, L. Li, S. Yu, Z. Lv and X. Ge, J.
Hazard. Mater., 2011, 189, 249-254; M. Liu, J. Guo, Y. Gu, J.
Gao, F. Liu and S. Yu, ACS Sustainable Chem. Eng., 2018, 6,
13114-13121; Y. Y. Liu, G. H. Qin, X. Y. Song, J. W. Ding, F. S.
Liu, S. T. Yu and X. P. Ge, J. Taiwan Inst. Chem. Eng., 2018, 86,
222-229.
12 S. Hata, H. Goto, E. Yamada and A. Oku, Polymer, 2002, 43,
2109-2116;S. Hata, H. Goto, S. Tanaka and A. Oku, J. Appl.
Polym. Sci., 2003, 90, 2959-2968.
13 C.-H. Lin, H.-Y. Lin, W.-Z. Liao and S. A. Dai, Green Chem., 2007,
9, 38-43; E. Quaranta, C. C. Minischetti and G. Tartaro, ACS
Omega, 2018, 3, 7261-7268.
14 N. Keller, G. Rebmann and V. Keller, J. Mol. Catal. A: Chem.,
2010, 317, 1-18; K. Shukla and V. C. Srivastava, Catal. Rev. Sci.
Eng., 2017, 59, 1-43; H.-Z. Tan, Z.-Q. Wang, Z.-N. Xu, J. Sun, Y.-P.
Xu, Q.-S. Chen, Y. Chen and G.-C. Guo, Catal. Today, 2018, 316,
2-12; M. Selva, A. Perosa, D. Rodríguez-Padrón and R. Luque,
ACS Sustainable Chem. Eng., 2019, 7, 6471-6479.
Notes and references
1
G. W. Huber, S. Iborra and A. Corma, Chem. Rev. (Washington,
DC, U. S.), 2006, 106, 4044-4098; M. Besson, P. Gallezot and C.
Pinel, Chem. Rev. (Washington, DC, U. S.), 2014, 114, 1827-
1870; K. Barta and P. C. Ford, Acc. Chem. Res., 2014, 47, 1503-
1512; C. Luo, S. Wang and H. Liu, Angew. Chem., Int. Ed., 2007,
46, 7636-7639; T. P. Vispute, H. Y. Zhang, A. Sanna, R. Xiao and
G. W. Huber, Science, 2010, 330, 1222-1227; C. Li, M. Zheng,
A. Wang and T. Zhang, Energy Environ. Sci., 2012, 5, 6383-6390;
Y. L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang, X. Y. Wan, Z. C.
Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang and H. L. Wan, Nat.
Commun., 2013, 4, 2141; B. O. de Beeck, M. Dusselier, J.
Geboers, J. Holsbeek, E. Morre, S. Oswald, L. Giebeler and B. F.
Sels, Energy Environ. Sci., 2015, 8, 230-240; S. Van den Bosch,
W. Schutyser, R. Vanholme, T. Driessen, S. F. Koelewijn, T.
Renders, B. De Meester, W. J. J. Huijgen, W. Dehaen, C. M.
Courtin, B. Lagrain, W. Boerjan and B. F. Sels, Energy Environ.
Sci., 2015, 8, 1748-1763; Q. Xia, Z. Chen, Y. Shao, X. Gong, H.
Wang, X. Liu, S. F. Parker, X. Han, S. Yang and Y. Wang, Nat.
Commun., 2016, 7, 11162; X. Gao, X. Chen, J. Zhang, W. Guo, F.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins