Communications
comparison with the branched-product standard[22] (Agilent Zobrax
Eclipse XDB-C8 column, 35% iPrOH in H2O, 1 mLminꢀ1
A. W. M. Lee, S. Masamune, L. A. Reed III, K. B. Sharpless, F. J.
Walker, Tetrahedron 1990, 46, 245.
,
tR(linear) = 15.7 min, tR(branched, two diastereomers) = 18.0 and
19.0 min). E/Z ratios (30:1) were determined by HPLC using the E
and Z diols without the acetonide group (Symmetry C-18 column,
[10] For example, see: K. Tsuboi, Y. Ichikawa, A. Naganawa, M.
Isobe, M. Ubukata, K. Isono, Tetrahedron 1997, 53, 5083.
[11] a) A. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J.
Am. Chem. Soc. 2003, 125, 11360; b) V. A. Keller, I. Kim, S. D.
Burke, Org. Lett. 2005, 7, 737.
[12] For syntheses of chiral (E)-2-buten-1,4-diols with good to
moderate enantioselectivities from allylation with chiral (E)-g-
(dimethylphenylsilyl)allylboronate reagents followed by epox-
idation/Petersen elimination, see: a) W. R. Roush, P. T. Grover,
Tetrahedron Lett. 1990, 31, 7567; b) W. R. Roush, A. N. Pinchuk,
G. C. Micalizio, Tetrahedron Lett. 2000, 41, 9413.
[13] For representative asymmetric allylation reactions, see: a) G.
Xia, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 2554; b) S. E.
Denmark, J. Fu, M. J. Lawler, J. Org. Chem. 2006, 71, 1523; c) K.
Kubota, J. L. Leighton, Angew. Chem. 2003, 115, 976; Angew.
Chem. Int. Ed. 2003, 42, 946; d) U. S. Racherla, H. C. Brown, J.
Org. Chem. 1991, 56, 401; e) W. R. Roush, A. E. Walts, L. K.
Hoong, J. Am. Chem. Soc. 1985, 107, 8186.
40% CH3CN in H2O, 1.0 mLminꢀ1
, tR(E) = 10.1 min, tR(Z) =
11.3 min). The linear acetate product (32 mg, 10%) was also
formed in this procedure and was difficult to separate from (+)-6.
Representative procedure for the [Pd(CH3CN)4](BF4)2-catalyzed
ꢀ
linear allylic C H oxidation of (ꢀ)-4 to (+)-6: Catalyst
[Pd(CH3CN)4](BF4)2 (44.4 mg, 0.1 mmol, 10 mol%), PhBQ (368 mg,
2.0 mmol, 2 equiv), p-anisic acid (456 mg, 3.0 mmol, 3 equiv), 4- MS
(200 mg), DMSO (0.380 mL), CH2Cl2 (0.120 mL), DIPEA (0.122 mL,
0.7 mmol, 0.7 equiv), and a teflon stir bar were added sequentially to a
borosilicate vial (40 mL). The vial was then capped and the reaction
mixture stirred at 418C for 1 h. The reaction was cooled to room
temperature and (ꢀ)-4 (262 mg, 1 mmol, 1 equiv) was added. The vial
was capped and stirred at 418C for a further 72 h. Care was taken to
keep all reagents off of the walls of the vial and in maintaining the
temperature between 408C and 438C. The workup and isolation
procedures were identical to those described on using Pd(OAc)2, to
give (+)-6 (71% average yield of 2 runs). Approximately 13% of (ꢀ)-
4 was also recovered. Ratios of linear/branched and E/Z products
were determined as described above and found to be similar to those
determined for Pd(OAc)2 (linear/branched > 300:1, E/Z = 36:1).
[14] C. Mukai, J. S. Kim, M. Uchiyama, S. Sakamoto, M. Hanaoka, J.
Chem. Soc. Perkin Trans. 1 1998, 2903.
[15] a) D. E. White, E. N. Jacobsen, Tetrahedron: Asymmetry 2003,
14, 3633; b) C. P. Stevenson, PhD thesis, Harvard University
(USA) 2005; c) J. M. Ready, E. N. Jacobsen, Angew. Chem. 2002,
114, 1432; Angew. Chem. Int. Ed. 2002, 41, 1374; d) M. H. Wu,
K. B. Hansen, E. N. Jacobsen, Angew. Chem. 1999, 111, 2167;
Angew. Chem. Int. Ed. 1999, 38, 2012.
Received: August 14, 2006
Published online: November 16, 2006
[16] This reaction was optimized using commercially available (R,R)-
[(salen)CoIII]OAc (2 mol%) to give the desired chiral epoxyke-
tal in 50% overall yield (95% ee). Lower yields may be
attributed to epoxide opening by MeOH during the ketalization
step with higher catalyst loadings of the monomeric catalyst. See
the Supporting Information for details.
ꢀ
Keywords: allylic oxidation · C H activation · carbohydrates ·
enantioselectivity · polyols
.
[17] The diastereomer which corresponds to racemization of the
allylic center was independently synthesized and was not
detected in the HPLC analysis of the products (see the
Supporting Information for details).
[18] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev.
1994, 94, 2483.
[19] S. Vijayasaradhi, J. Singh, I. Aidhen, Synlett 2000, 110.
[20] The silyl groups were removed and (ꢀ)-11 was peracetylated to
give 1,2,3,6-O-tetraacetyl-4-O-benzyl-l-galactopyranose, the
spectroscopic data of which was found to correspond to those
reported for the known compound (see the Supporting Infor-
mation for details): L. Ermolenko, N. A. Sasaki, J. Org. Chem.
2006, 71, 693.
[21] A. B. Northrup, D. W. C. MacMillan, Science 2004, 305, 1752.
[22] a) M. S. Chen, N. Prabagaran, N. Labenz, M. C. White, J. Am.
Chem. Soc. 2005, 127, 6970; b) K. J. Fraunhoffer, N. Prabagaran,
L. E. Sirois, M. C. White, J. Am. Chem. Soc. 2006, 128, 9032.
[1] a) P. A. Wender, M. K. Hilinski, A. V. W. Mayweg, Org. Lett.
2005, 7, 79; b) Q. Zhang, J. O. Rich, I. C. Cotterill, D. P.
Pantaleone, P. C. Michels, J. Am. Chem. Soc. 2005, 127, 7286;
c) A. Hinman, J. Du Bois, J. Am. Chem. Soc. 2003, 125, 11510;
d) B. D. Dangel, K. Godula, S. W. Youn, B. Sezen, D. Sames, J.
Am. Chem. Soc. 2002, 124, 11856; e) R. Breslow, S. Baldwin, T.
Flechter, P. Kalicky, S. Liu, W. Washburn, J. Am. Chem. Soc.
1973, 95, 3251.
[2] K. J. Fraunhoffer, D. A. Bachovchin, M. C. White, Org. Lett.
2005, 7, 223.
[3] a) M. S. Chen, M. C. White, J. Am. Chem. Soc. 2004, 126, 1346;
for a related N,N-dimethylacetamide system, see: b) T. Mitsu-
dome, T. Umetani, N. Nosaka, K. Mori, T. Mizugaki, K. Ebitani,
K. Kaneda, Angew. Chem. 2006, 118, 495; Angew. Chem. Int. Ed.
2006, 45, 481.
[4] For an explanation of the term dissonant relationship, see: D. A.
Evans, G. C. Andrews, Acc. Chem. Res. 1974, 7, 147.
[5] For example, see: a) L. Jiang, S. D. Burke, Org. Lett. 2002, 4,
3411; b) A. B. Smith III, Q. Lin, V. A. Doughty, L. Zhuang,
M. D. McBriar, J. K. Kerns, C. S. Brook, N. Murase, K.
Nakayama, Angew. Chem. 2001, 113, 202; Angew. Chem. Int.
Ed. 2001, 40, 196.
[6] For example, see: M. T. Crimmins, F. Caussanel, J. Am. Chem.
Soc. 2006, 128, 3128.
[7] For example, see: a) B. M. Trost, S. T. Wrobleski, J. D. Chisholm,
P. E. Harrington, M. Jung, J. Am. Chem. Soc. 2005, 127, 13589;
b) N. Ikemoto, S. L. Schreiber, J. Am. Chem. Soc. 1992, 114,
2524.
[8] a) A. Guzman-Perez, E. J. Corey, Tetrahedron Lett. 1997, 38,
5941; b) E. J. Corey, A. Guzman-Perez, M. C. Noe, J. Am. Chem.
Soc. 1995, 117, 10805.
[9] a) S. Y. Ko, A. W. M. Lee, S. Masamune, L. A. Reed III, K. B.
Sharpless, F. J. Walker, Science 1983, 220, 949; b) S. K. Ko,
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 8217 –8220