2016
C. C. Silveira et al. / Tetrahedron Letters 51 (2010) 2014–2016
Silvestri, R.; De Martino, G.; La Regina, G.; Ártico, M.; Massa, S.; Vargiu, L.;
Mura, M.; Loi, A. G.; Marceddu, T.; La Colla, P. J. Med. Chem. 2003, 46, 2482; (d)
Avis, I.; Martinez, A.; Tauler, J.; Zudaine, E.; Mayburd, A.; Abu-Ghazaleh, R.;
Obndrey, F.; Mulshine, J. L. Cancer Res. 2005, 65, 4181; (e) Funk, C. D. Nat. Rev.
Drug Disc. 2005, 4, 664.
ble 1, entry 7). Finally, the reaction was performed at both 90 °C
and room temperature. The reaction carried out at 90 °C led to
the formation of the desired product in very similar yield to
70 °C. By contrast, a significant decrease in the yield of 3-sulfenyl
indole was observed when the reaction was performed at room
temperature, even after long reaction time (Table 1, entry 8).
Since the best conditions were established (Table 1, entry 4), the
protocol was extended to other N-(alkylthio) and N-(aryl-
thio)phthalimides,11 reacting with indole, 5-bromoindole and 6-
methoxyindole (Table 2, Scheme 1).12 For all the studied examples,
the 3-sulfenyl indoles 3 were obtained in good to excellent yields
after stirring at 70 °C for 1.5–4.0 h (Table 2). When 5-bromo-1H-in-
dole (1b) was used, the respective brominated products were ob-
tained in slightly higher yields, compared to 1a (Table 2, entries
5–7). However, when 5-methoxy-1H-indole (1c) was used, the in-
dole derivatives were obtained in slightly lower yields, compared
to 1a and 1b (Table 2, entries 8–10). The N-(dodecylthio)phthali-
mide (2d) reacted with indole 1a under the established standard
condition to afford, after 3.5 h, 3-(dodecylthio)-1H-indole (3d) in
80% yield (Table 2, entry 4).
It is worth mentioning that the indole nitrogen need not be pro-
tected. In fact, when the reaction was performed with 1-methyl-
1H-indole and N-(phenylthio)phthalimide (2a) the corresponding
product 3k was obtained in 60% yield after 5 h, and no reaction
was observed when 1-tosyl-1H-indole was used even after several
hours of reaction (Scheme 2).
In conclusion, we have been able to show that CeCl3 is an effec-
tive catalyst for the synthesis of 3-sulfenyl indoles. The method is
simple and general for the reaction of N-(arylthio)phthalimides
with indoles.
3. (a) Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. J. Org. Chem. 2004, 69,
7688; (b) Campbell, J. A.; Broka, C. A.; Gong, L.; Walker, K. A. M.; Wang, J.-H.
Tetrahedron Lett. 2004, 45, 4073.
4. (a) De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M. C.; Barbera, M. C.;
Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2004, 47,
6120; (b) De Martino, G.; Edler, M. C.; La Regina, G.; Coluccia, A.; Barbera, M. C.;
Barrow, D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.;
Silvestri, R. J. Med. Chem. 2006, 49, 947.
5. (a) Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J.; Praneeth, K. Synthesis 2009, 1520; (b)
Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034; (c)
Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. R. Org. Lett. 2006, 8, 565; (d)
Matsugi, M.; Murata, K.; Gotanda, K.; Nambu, H.; Anilkumar, G.; Matsumoto,
K.; Kita, Y. J. Org. Chem. 2001, 66, 2434; (e) Wu, G.; Wu, J.; Wu, L. Synth.
Commun. 2008, 38, 1036; (f) Schlosser, K. M.; Krasutsky, A. P.; Hamilton, H. W.;
Reed, J. E.; Sexton, K. Org. Lett. 2004, 6, 819.
6. Barraja, P.; Diana, P.; Carbone, A.; Cirrincione, G. Tetrahedron 2008, 64, 11625.
7. Chen, Y.; Cho, C. H.; Larock, R. C. Org. Lett. 2009, 11, 173.
8. (a) Sabitha, G.; Yadav, J. S. In Encyclopedia of Reagents for Organic Synthesis;
Paquette, L. A., Ed.; Wiley-VCH: Weinheim, 2006; (b) Bartoli, G.; Di Antonio, G.;
Giovannini, R.; Giuli, S.; Lanari, S.; Paoletti, M.; Marcantoni, E. J. Org. Chem.
2008, 73, 1919; (c) Yadav, J. S.; Subba Reddy, B. V.; Suresh Reddy, C.; Krishna, A.
D. Tetrahedron Lett. 2007, 48, 2029; (d) Meng, Q.; Sun, Y.; Ratovelomanana-
Vidal, V.; Genêt, J. P.; Zhang, Z. J. Org. Chem. 2008, 73, 3842.
9. (a) Silveira, C. C.; Mendes, S. R.; Libero, F. M.; Lenardão, E. J.; Perin, G.
Tetrahedron Lett. 2009, 50, 6060; (b) Silveira, C. C.; Mendes, S. R. Tetrahedron
Lett. 2007, 48, 7469; (c) Silveira, C. C.; Felix, L. A.; Braga, A. L.; Kaufman, T. S. Org.
Lett. 2005, 7, 3701; (d) Silveira, C. C.; Bernardi, C. R.; Braga, A. L.; Kaufman, T. S.
Tetrahedron Lett. 2003, 44, 6137.
10. Tomita, K.; Terada, A.; Tachikawa, R. Hetetocycles 1976, 4, 729.
11. The N-(thio)phthalimides 2b–d were prepared according to: Gillis, H. M.;
Greene, L.; Thompson, A. Synlett 2009, 112.
12. General procedure for the synthesis of 3-sulfenyl indoles: To a mixture of DMF
(5 mL), indole (1, 1.0 mmol), and N-thioalkyl or N-thioarylphthalimides (2,
1.1 mmol), under Ar, was added dry CeCl3 (0.0246 g, 0.1 mmol) at room
temperature. The reaction mixture was followed by TLC and stirred at 70 °C for
the time indicated on Table 2 and cooled to rt. Water (20 mL) was added and
the mixture extracted with ethyl acetate (3 Â 10 mL). The organic phase was
washed with water, aqueous 2% NaOH solution, and then brine and dried over
anhydrous MgSO4. The solvent was removed under reduced pressure and the
residue was purified by flash chromatography on silica gel (ethyl acetate–
hexanes, 5:95) to afford pure products (3a–j). Spectral data of selected
compounds: 3a mp 152–154 °C (lit.10 151–153 °C). 1H NMR (400 MHz, CDCl3):
d = 8.34 (br s, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 2.6 Hz, 1H), 7.41 (d,
J = 8.0 Hz, 1H), 7.27–7.23 (m, 1H), 7.17–7.03 (m, 6H). 13C NMR (100 MHz,
CDCl3): d = 139.17, 136.42, 130.67, 129.04, 128.66, 125.76, 124,73, 123.01,
120.87, 119.62, 111.56, 102.70. MS: m/z (%) = 225 (M+, 100), 193 (25), 165 (13),
148 (15), 112 (10), 77 (13); 3b mp 127–129 °C (lit.3a 127.5–128.3 °C). 1H NMR
(400 MHz, CDCl3): d = 8.36 (br s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 2.6 Hz,
1H), 7.41 (d, J = 8.0 Hz, 1H), 7.28–7.24 (m, 1H), 7.18–7.14 (m, 1H), 7.10 (d,
J = 8.4 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H). 13C NMR (100 MHz, CDCl3): d = 137.81,
136.51, 130.65, 128.73 (2C), 127.12 (2C), 123.21, 121.05, 119.51, 111.63,
102.52. MS: m/z (%) = 259 (M+, 100), 224 (55), 148 (22), 112 (39), 77 (16).
Acknowledgments
This project is funded by MCT/CNPq, CAPES and FAPERGS.
References and notes
1. (a) Sundberg, R. J. In The Chemistry of Indoles; Academic Press: New York, 1996;
(b) Casapullo, A.; Bifulco, G.; Bruno, I.; Riccio, R. J. Nat. Prod. 2000, 63, 447; (c)
Garbe, T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J.
Nat. Prod. 2000, 63, 596; (d) Bao, B.; Sun, Q.; Yao, X.; Hong, J.; Lee, C. O.; Sim, C.
J.; Im, K. S.; Jung, J. H. J. Nat. Prod. 2005, 68, 711.
2. (a) Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.; Rooney, C. S.; Balani, S. K.;
Condra, J. H.; Emini, E. A.; Goldman, M. E.; Greenlee, W. J.; Kauffman, L. R.;
O’Brien, J. A.; Sardana, V. V.; Schleif, W. A.; Theoharides, A. D.; Anderson, P. S. J.
Med. Chem. 1993, 36, 1291; (b) Hamel, P. J. Org. Chem. 2002, 67, 2854; (c)