10.1002/anie.202003982
Angewandte Chemie International Edition
COMMUNICATION
3435; b) C. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173–6214; c) L. Ping,
D. S. Chung, J. Bouffard, S.-g. Lee, Chem. Soc. Rev. 2017, 46, 4299–
4328; d) Q. Lu, F. Glorius, Angew. Chem., Int. Ed. 2017, 56, 49–51;
Angew. Chem. 2017, 129, 49–51; e) F. Burg, M. Gicquel, S.
Breitenlechner, A. Pöthig, T. Bach, Angew. Chem., Int. Ed. 2018, 57,
2953–2957; Angew. Chem. 2018, 130, 3003–3007; f) H. Guan, S. Sun,
Y. Mao, L. Chen, R. Lu, J. Huang, L. Liu, Angew. Chem., Int. Ed. 2018,
57, 11413–11417; Angew. Chem. 2018, 130, 11583–11587; g) Y. Zhu,
K. Huang, J. Pan, X. Qiu, X. Luo, Q. Qin, J. Wei, X. Wen, L. Zhang, N.
Jiao, Nat. Commun. 2018, 9, 2625.
[3]
For selected reviews on C-H functionalization reactions catalyzed by
NHPI and its analogues, see: a) R. A. Sheldon, I. W. C. E. Arends, Adv.
Synth. Catal. 2004, 346, 1051–1071; b) F. Recupero, C. Punta, Chem.
Rev. 2007, 107, 3800–3842; c) C. Galli, P. Gentili, O. Lanzalunga,
Angew. Chem., Int. Ed. 2008, 47, 4790–4796; Angew. Chem. 2008,
120, 4868–4874; d) S. Coseri, Catal. Rev. 2009, 51, 218–292.
Y. Amaoka, M. Nagatomo, M. Inoue, Org. Lett. 2013, 15, 2160–2163.
X. Baucherel, L. Gonsalvi, I. W. C. E. Arends, S. Ellwood, R. A.
Sheldon, Adv. Synth. Catal. 2004, 346, 286–296.
[4]
[5]
[6]
[7]
N. Hirai, N. Sawatari, N. Nakamura, S. Sakaguchi, Y. Ishii, J. Org.
Chem. 2003, 68, 6587–6590.
a) F. Minisci, O. Porta, F. Recupero, C. Gambarotti, R. Paganelli, G. F.
Pedulli, F. Fontana, Tetrahedron Lett. 2004, 45, 1607–1609; b) Z.-H. Li,
B. Fiser, B.-L. Jiang, J.-W. Li, B.-H. Xu, S.-J. Zhang, Org. Biomol.
Chem. 2019, 17, 3403–3408.
Scheme 5. Space-filling models in the site-selective abstraction of the benzylic
hydrogen atom at the ethyl side of 7a with the sterically hindered N-
hydroxymaleimide derivative 3c.
[8]
[9]
a) S. Kato, T. Iwahama, S. Sakaguchi, Y. Ishii, J. Org. Chem. 1998, 63,
222–223; b) F. Minisci, F. Recupero, A. Cecchetto, C. Punta, C.
Gambarotti, F. Fontana, G. F. Pedulli, J. Heterocycl. Chem. 2003, 40,
325–328; c) T. Kagayama, S. Sakaguchi, Y. Ishii, Tetrahedron Lett.
2005, 46, 3687–3689.
In conclusion, we have designed and synthesized a series of
novel bowl-shaped N-hydroxyimide derivatives as organoradical
catalysts for the site-selective amination of benzylic C(sp3)-H
bonds. Further investigations into the applications of bowl-
shaped N-hydroxyimide catalysts of the type 3c and 3d for other
C-H activation and functionalization reactions, as well as the
design of more efficient bowl-shaped N-hydroxyimide catalysts,
are currently in progress in our laboratory.
For recent examples, see: a) P. A. Gunchenko, J. Li, B. Liu, H. Chen, A.
E. Pashenko, V. V. Bakhonsky, T. S. Zhuk, A. A. Foki, Molecular
Catalysis, 2018, 447, 90–96; b) H. Tateno, Y. Miseki, K. Sayama,
Chem. Commun. 2019, 55, 9339–9342; c) G. Dobras, M. Sitko, M.
Petroselli, M. Caruso, M. Cametti, C. Punta, B. Orlińska,
ChemCatChem, 2020, 12, 259–266.
[10] a) S. Sakaguchi, M. Eikawa, Y. Ishii, Tetrahedron Lett. 1997, 38, 7075–
7078; b) S. Sakaguchi, Y. Nishiwaki, T. Kitamura, Y. Ishii, Angew.
Chem., Int. Ed. 2001, 40, 222–224; Angew. Chem. 2001, 113, 228–230.
[11] a) C. Einhorn, J. Einhorn, C. Marcadal-Abbadi, J.-L. Pierre, J. Org.
Chem. 1999, 64, 4542–4546; b) M. Nechab, D. N. Kumar, C. Philouze,
C. Einhorn, J. Einhorn. Angew. Chem., Int. Ed. 2007, 46, 3080−3083;
Angew. Chem. 2007, 119, 3140–3143; c) J. Shen, C.-H. Tan, Org.
Biomol. Chem. 2008, 6, 4096−4098; d) M. G. Capraro, P. Franchi, O.
Lanzalunga, A. Lapi, M. Lucarini, J. Org. Chem. 2014, 79, 6435–6443.
[12] a) J. Ozawa, M. Tashiro, J. Ni, K. Oisaki, M. Kanai, Chem. Sci. 2016, 7,
1904–1909; b) J. Ni, J. Ozawa, K. Oisaki, M. Kanai, M. Org. Biomol.
Chem., 2016, 14, 4378−4381. See also: J. Liu, Z. Zhang, L. Wu, W.
Zhang, P. Chen, Z. Lin, G. Liu, Nature, 2019, 574, 516-521.
Acknowledgements
This work was supported by JSPS KAKENHI grants
JP26220803 and JP17H06450 (Hybrid Catalysis).
Conflicts of interest
The authors declare no conflict of interests.
[13] The geometry of the space-filling models was optimized by the density
functional theory (DFT) calculations at the B3LYP/6-31G++(d,p) level of
theory using the Gaussian 09 software package. M. J. Frisch, et al.,
Gaussianꢀ09, RevisionꢀA.02, Gaussian, Inc., Wallingford CT, 2009.
[14] Y. Amaoka, S. Kamijo, T. Hoshikawa, M. Inoue, J. Org. Chem. 2012, 77,
9959–9969.
Keywords: N-hydroxyimide • site-selectivity • amination • diethyl
azodicarboxylate • radical reactions
[1]
For selected reviews on the functionalization of C(sp3)-H bonds, see: a)
A. E. Shilov, G. B. Shul′pin, Chem. Rev. 1997, 97, 2879–2932; b) R.
Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, Chem.-
Eur. J. 2010, 16, 2654–2672; c) H. M. L. Davies, J. Du Bois, J.-Q. Yu,
Chem. Soc. Rev. 2011, 40, 1855–1856; d) J. C. Lewis, P. S. Coelho, F.
H. Arnold, Chem. Soc. Rev. 2011, 40, 2003–2021; e) He, J. M. Wasa,
K.S.L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754–8786; f)
J. C. K. Chu, T. Rovis, Angew. Chem., Int. Ed. 2018, 57, 62–101;
Angew. Chem. 2018, 130, 64–105; g) Z. Chen, M.-Y. Rong, J. Nie, X.-F.
Zhu, B. -F. Shi, J. -A. Ma, Chem. Soc. Rev., 2019, 48, 4921–4942.
For selected reviews and recent examples of selective C-H
functionalization reactions, see: a) T. Newhouse, P. S. Baran, Angew.
Chem., Int. Ed. 2011, 50, 3362–3374; Angew. Chem. 2011, 123, 3422-
[15] Catalyst 3 was prepared in 2-step sequence from 1-(benzyloxy)-3,4-
dibromo-1H-pyrrole-2,5-dione: Catalyst 3a: 63% overall yield; catalyst
3c: 29% overall yield; catalyst 3d: 39% overall yield (see also
Supporting Information). The synthetic pathways of arylboronic acids
and their overall yields from the known compounds are described in
Supporting Information.
[2]
.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.