5492
R. Epple et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5488–5492
6. Berger, J.; Moller, D. E. Annu. Rev. Med. 2002, 53, 409.
7. Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B.
R. J. Med. Chem. 2000, 43, 527.
8. Willson, T. M.; Cobb, J. E.; Cowan, D. J.; Wiethe, R. W.;
Correa, I. D.; Prakash, S. R.; Beck, K. D.; Moore, L. B.;
Kliewer, S. A.; Lehmann, J. M. J. Med. Chem. 1996, 39,
665.
9. Leibowitz, M. D.; Fievet, C.; Hennuyer, N.; Peinado-
Onsurbe, J.; Duez, H.; Berger, J.; Cullinan, C. A.;
Sparrow, C. P.; Baffic, J.; Berger, G. D.; Santini, C.;
Marquis, R. W.; Tolman, R. L.; Smith, R. G.; Moller, D.
E.; Auwerx, J. FEBS Lett. 2000, 473, 333.
in the docking study to the co-crystal structure with
LCI765 is observed for the dihedral angle chi-1 of
Leu330, whose value is different by ꢀ100°.19 This move-
ment is necessary in order to enlarge a cavity lined by
residues Phe327, Leu330, Val334, Leu339, Ile364, and
Lys367, so that it can accommodate the phenyl ring in
position 5 of the isoxazole. The corresponding cavity
does not exist in PPARa and PPARc where both iso-
forms have the bigger Met residues in place of Val334
and Ile364, respectively. This might explain the observed
PPARd selectivity of 3,4,5-trisubstituted isoxazoles.
10. Oliver, W. R., Jr.; Shenk, J. L.; Snaith, M. R.; Russell, C.
S.; Plunket, K. D.; Bodkin, N. L.; Lewis, M. C.; Winegar,
D. A.; Sznaidman, M. L.; Lambert, M. H.; Xu, H. E.;
Sternbach, D. D.; Kliewer, S. A.; Hansen, B. C.; Willson,
T. M. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5306.
11. Epple, R.; Russo, R.; Azimioara, M.; Cow, C.; Xie, Y.;
Wang, X.; Wityak, J.; Karanewsky, D.; Gerken, A.;
Iskandar, M.; Saez, E.; Seidel, H. M.; Tian, S.-S. Bioorg.
Med. Chem. Lett. 2006, 16, 4376.
12. The synthetic procedures of all analogs described in this
communication except compounds 3–6 and 11a can be
found in the following patent application: Epple, R.;
Russo, R.; Azimioara, M.; Xie, Y. WO 2005113519.
Synthetic procedures of compounds 3–6 and 11a can be
found in the supplementary material.
13. C57BL/6 male mice (age 8–9 weeks, Charles River
Laboratories) were orally gavaged once daily with the
compounds at 10 mg/kg or with vehicle (0.5% CMC: 2%
Tween 80) for 3 days. On the 4th day and 4 h after the last
dose was administered, mice were euthanized. Samples of
skeletal muscle (quadriceps), adipose tissue, jejunum, and
ileum were collected, rapidly frozen in liquid nitrogen, and
stored at À80 °C. Total RNA was isolated from the tissues
and SYBR Green quantitative real-time-PCR was per-
formed on an ABI PRISM 7900HT Sequence Detection
system (Applied biosystems). For each sample, the quan-
tity of the target gene and the endogenous reference
GAPDH was determined to obtain a normalized target
value. Data were analyzed using SDS 2.0 software
(Applied biosystems).
In summary, PPARd-selective isoxazoles 17d, 17i, and
17j exhibiting greatly improved mouse in vivo pharma-
cokinetic properties were identified, while the in vitro
activity and selectivity of the three isoxazoles was main-
tained or improved compared to compound 1. This was
achieved by optimization of the head group in position 3
of the isoxazole core of compound 1. Compound
LCI765 (17d) regulates expression of genes involved in
energy homeostasis in relevant tissues when dosed orally
in C57BL6 mice. Additionally, a co-crystal structure of
compound LCI765 with the PPARd ligand binding do-
main revealed the formation and occupancy of a new
hydrophobic cavity. This cavity may be formed exclu-
sively in the PPARd isoform due to the smaller amino
acid side chains lining the pocket as compared to the
other isoforms. Compound LCI765 represents the first
example to occupy this side pocket and underlines the
flexibility of the PPAR ligand binding domain to accom-
modate various diet-derived lipids and their metabolites.
LCI765 should be a useful tool compound to elucidate
the pharmacological consequences of selective PPARd
activation.
Acknowledgments
We gratefully acknowledge Drs. T. R. Vedananda,
Sandra Teixeira, and Peter G. Schultz for their helpful dis-
cussions and support. We also thank ActiveSight, San
Diego, for their support in our co-crystallization efforts.
14. Dressel, U.; Allen, T. L.; Pippal, J. B.; Rohde, P. R.;
Lau, P.; Muscat, G. E. O. Mol. Endocrinol. 2003, 17,
2477.
15. Wang, Y.-X.; Lee, C.-H.; Tiep, S.; Yu, R. T.; Ham, J.;
Kang, H.; Evans, R. M. Cell 2003, 113, 159.
16. Tanaka, T.; Yamamoto, J.; Iwasaki, S.; Asaba, H.; Ikeda,
Y.; Watanabe, Y.; Uchiyama, Y.; Sumi, K.; Iguchi, H.;
Ito, S.; Doi, T.; Hamakubo, T.; Naito, M.; Auwerx, J.;
Yanagisawa, M.; Kodama, T.; Sakai, J. Proc. Natl. Acad.
Sci. U.S.A. 2003, 100, 15924.
17. Atomic coordinates of the co-crystal structure have been
deposited with the PDB and are accessible under the code
2J14.
Supplementary data
Supplementary data associated with this article can be
18. Xu, H. E.; Lambert, M. H.; Montana, V. G.; Parks, D. J.;
Blanchard, S. G.; Brown, P. J.; Sternbach, D. D.;
Lehmann, J. M.; Wisely, G. B.; Willson, T. M.; Kliewer,
S. A.; Milburn, M. V. Mol. Cell 1999, 3, 397.
19. The amino acid labels in Figure 3 are given in consistency
with published crystal structures, but do not correspond to
actual PPARd sequence numbering. The actual numbers
for residues Phe327, Leu330, Val334, Leu339, Ile364, and
Lys367 are Phe291, Leu294, Val298, Leu303, Ile328, and
Lys331, respectively.
References and notes
1. Issemann, I.; Green, S. Nature 1990, 347, 645.
2. Mangelsdorf, D. J.; Evans, R. M. Cell 1995, 83, 841.
3. Cheng, P. T. W.; Mukherjee, R. Mini-Rev. Med. Chem.
2005, 5, 741.
4. Staels, B.; Fruchart, J.-C. Diabetes 2005, 54, 2460.
5. Evans, R. M.; Barish, G. D.; Wang, Y.-X. Nat. Med. 2004,
10, 355.