Venom Chemistry of the Ant Myrmicaria melanogaster
Journal of Natural Products, 2007, Vol. 70, No. 2 167
hydrogenated at 3 atm over 0.35 g of PtO2 overnight.39 After filtration,
removal of the solvent in vacuo provided 2.8 g (75% yield) of the
ethyl 4-aminoheptanoate hydrochloride. EIMS (unstable free base) m/z
173 [M+] (0.1), 130 (29), 128 (7), 84 (89), 72 (100), 56 (36), 43 (17),
41 (38).
Additionally, small amounts of three isomers of alkaloid 223AB were
formed and identified by comparison with their literature GC-FTIR
and mass spectra.
Acknowledgment. T.H.J and H.L.V gratefully acknowledge the
support of the Camille and Henry Dreyfus Foundation, and D.W.D
thanks the NSF (IBN-9707932) and the University of Utah Research
Committee for travel funds. We thank Dr. J. Lloyd, NIDDK, for the
direct probe HRESIMS mass measurements reported in the Experi-
mental Section. The research done at NIH was supported by the
intramural research funds of NIDDK.
A solution containing 2.40 g (12.7 mmol) of acetal 14 in 20 mL of
EtOH and 5 mL of 10% HCl (v/v) was stirred for 3 h at room
temperature. After neutralization with solid NaHCO3, the solvent was
removed in vacuo and the residue was extracted with ether. The ether
layer was dried over anhydrous MgSO4, filtered, and concentrated, and
the residue was taken up in 30 mL of CH2Cl2. This solution was added
to 2.80 g (13.2 mmol) of ethyl 4-aminoheptanoate hydrochloride and
0.1 g of NaOAc in 50 mL of water, and the two-phase mixture was
refluxed for 4 h. After checking an aliquot by GC-MS for completion,
the cooled mixture was extracted with three 25 mL portions of ether,
and the combined ether extracts were dried over anhydrous MgSO4,
filtered, and distilled, to provide 1.36 g of 15 (38% yield), bp
(Kugelrohr) 125-130 °C (0.15 mmHg). GC-FTIR νmax 3112, 2968,
2942, 2883, 1750 (s), 1543, 1476, 1375, 1277, 1170 (s), 1113, 1039,
877, 772 cm-1; 1H NMR (400 MHz, CDCl3) δ 6.56 (1H, s), 6.12 (1H,
s), 5.83 (1H, s), 4.09 (2H, q, J ) 7 Hz), 3.97 (1H, m), 2.47 (2H, t, J
) 8 Hz), 2.09 (4H, br s), 1.95 (1H, m) 1.22 (3H, t, J ) 7 Hz), 1.13
(2H, m), 0.94 (3H, t, J ) 7 Hz), 0.87 (3H, t, J ) 7 Hz); 13C NMR (100
MHz, CDCl3) δ 173.48, 134.16, 115.41, 107.68, 104.59, 60.63, 54.46,
39.41, 31.79, 31.28, 30.83, 26.37, 22.88, 19.74, 14.42, 14.20, 14.17;
EIMS m/z 279 [M+] (18), 250 (5), 236 (17), 234 (12), 222 (10), 208
(5), 195 (10), 178 (8), 157 (10), 150 (25), 137 (9), 136 (8), 122 (28),
111 (18), 106 (15), 83 (25), 81 (15), 80 (100), 55 (43), 41 (52); HRMS
m/z 279.2154, calcd for C17H29NO2, 279.2198.
References and Notes
(1) Jones, T. H.; Blum, M. S.; Fales, H. M. Tetrahedron 1982, 38, 1949-
1958.
(2) Numata, A.; Ibuka, T. In The Alkaloids; Brossi, A., Ed.; Academic
Press: New York, 1987; Vol. 31, pp 193-315.
(3) Jones, T. H.; DeVries, P. J.; Escoubas, P. J. Chem. Ecol. 1991, 17,
2507-2517.
(4) Jones, T. H.; Gorman, J. S. T.; Snelling, R. R.; Delabie, J. H. C.;
Blum, M. S.; Garraffo, H. M.; Jain, P.; Daly, J. W.; Spande, T. F. J.
Chem. Ecol. 1999, 25, 1170-1193.
(5) Ritter, F. J.; Persoons, C. J. Neth. J. Zool. 1975, 25, 261-275.
(6) Jones, T. H.; Highet, R. J.; Blum, M. S.; Fales, H. M. J. Chem. Ecol.
1984, 10, 1233-1249.
(7) Jones, T. H.; Stahly, S. M.; Don, A. W.; Blum, M. S. J. Chem. Ecol.
1988, 14, 2197-2212.
(8) Jones, T. H.; Laddago, A.; Don, A. W.; Blum, M. S. J. Nat. Prod.
1990, 53, 375-381.
(9) Jones, T. H.; Torres, J. A.; Spande, T. F.; Garraffo, H. M.; Blum,
M. S.; Snelling, R. R. J. Chem. Ecol. 1996, 22, 1221-1236.
(10) Brand, J. M.; Blum, M. S.; Lloyd, H. A.; Fletcher, D. J. C. Ann.
Entomol. Soc. Am. 1974, 67, 525-526.
(11) Francke, W.; Schro¨der, F.; Walter, F., Sinnwell, V.; Baumann, H.;
Kaib, M. Liebigs Ann. 1995, 965-977.
(12) Schro¨der, F.; Sinnwell, V.; Baumann, H.; Kaib, M. Chem. Commun.
1996, 2139-2140.
(13) Schro¨der, F.; Francke, S.; Francke, W.; Baumann, H.; Kaib, M.;
Pasteels, J. M.; Daloze, D. Tetrahedron 1996, 52, 13539-13546.
(14) Schro¨der, F.; Sinnwell, V.; Baumann, H.; Kaib, M.; Francke, W.
Angew. Chem., Int. Engl. Ed. 1997, 36, 77-80.
(15) Moreau, C. S.; Bell, C. D.; Vila, R.; Archibald, S. B.; Pierce, N. E.
Science 2006, 311, 101-104.
(16) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68,
1556-1575.
(17) Sonnet, P. E.; Oliver, J. E. Lloydia 1975, 12, 289-294.
(18) Garraffo, H. M.; Spande, T. F.; Daly, J. W.; Baldessari, A.; Gros, E.
G. J. Nat. Prod. 1993, 56, 357-373. The E, Z nomenclature was
introduced by Sonnet and Oliver17 and has been used by us and others
generally for “izidine” stereochemical assignments. The E (entgegen)
and Z (zusammen) descriptors refer respectively to whether the CHs
at ring substituents are on opposite molecular faces or the same face
as the lowest numbered substitutent.
3-Butyl-5-propyl-8-oxo-5,6,7,8-tetrahydroindolizine (16). A solu-
tion containing 0.30 g (1.08 mmol) of pyrrole ester 15 in 10 mL of
anhydrous CH2Cl2 under argon was treated with 1.7 mL of 2 M BBr3
in CH2Cl2 at room temperature. After 40 min the solution was
neutralized with an excess of saturated NaHCO3 and the mixture was
extracted with three 25 mL portions of ether. The combined ether
extracts were dried over anhydrous MgSO4, filtered, and concentrated
in vacuo to provide 0.23 g of 16 that was 81% pure by GC-MS. GC-
FTIR νmax 2963, 2947, 2882, 1685 (s), 1541, 1476, 1422, 1397, 1332,
1242, 1187, 1121, 775 cm-1; EIMS m/z 233 [M+] (43), 191 (18), 190
(100), 176 (10), 163 (10), 162 (17), 149 (30), 148 (88), 135 (17), 120
(18), 106 (23), 80 (25), 79 (22), 78 (23), 55 (16), 41 (75); HRMS m/z
234.1859 ([M + 1]+), calcd for C15H24NO, 234.1858, 233.1823 ([M]+),
calcd for C15H23NO, 233.1780.
3-Butyl-5-propyl-8-hydroxyindolizidine (10a-d). In a typical
hydrogenation, a solution containing 30 mg (0.13 mmol) of 16, two
drops of triethylamine, and 60 mg of 5% Rh/Al2O3 in 10 mL of EtOAc
was shaken under 3 atm H2 overnight. Gas chromatographic analysis
revealed the presence of four isomers, 10a, 10b, 10c, and 10d, with an
88% combined yield in a 3:1:6:4.7 ratio having similar mass spectra.
10a: EIMS m/z 239 [M+] (1), 238 (1), 197 (3), 196 (29), 183 (11),
182 (100), 154 (13), 140 (9), 126 (4), 122 (3), 96 (5), 95 (4), 94 (7),
82 (10), 68 (12), 55 (30), 41 (50). 10b: EIMS m/z 239 [M+] (1), 238
(1), 197 (9), 196 (83), 183 (11), 182 (100), 154 (13), 140 (9), 126 (4),
122 (7), 96 (5), 95 (4), 94 (7), 82 (10), 68 (12), 55 (30), 41 (50). 10c:
EIMS m/z 239 [M+] (1), 238 (1), 197 (3), 196 (100), 183 (11), 182
(90), 152 (3), 140 (9), 126 (2), 122 (5), 96 (5), 95 (4), 94 (7), 82 (10),
68 (12), 55 (30), 41 (50). 10d: EIMS m/z 239 [M+] (1), 238 (1), 197
(3), 196 (68), 183 (11), 182 (100), 152 (3), 140 (9), 126 (2), 122 (2),
96 (5), 95 (4), 94 (7), 82 (10), 68 (12), 55 (30), 41 (50). In a different
hydrogenation experiment, run for 4 h, the ratio of 10a, 10b, 10c, and
10d was 3.5:1:3.6:1.8. The GC-FTIR spectra for 10a, 10b, 10c, and
10d are shown in Figure 4. HRMS for 10a: m/z 239.2316 ([M]+),
calcd for C15H29NO, 239.2249; 196.1735 ([M - C3H7 ]+), calcd for
C12H22NO, 196.1701; 180.1567 ([M - C4H9 ]+), calcd for C11H20NO,
180.1545. The GC-MS and GC-FTIR data for the first eluting isomer,
10a, were identical to those of the natural 10a. Minor amounts of
unreacted starting material 16 were seen at a longer GC retention time
than 10a-d. At a shorter retention time, equivalent amounts of the
7,8-dehydro-transformation product of 16 were seen. EIMS m/z 217
(28), 174 (M - Pr, 100), 160 (18), 146 (8), 144 (13), 133 (15), 132
(38), 130 (33), 118 (15), 117 (15), 91 (8), 77 (13); GC-FTIR νmax 3107,
3058, 2965, 2944, 2885, 1624, 1491, 1424, 1379, 1290, 1211, 1027,
(19) The Aldrich Library of FT-IR Spectra, Vapor Phase, Vol. 3; Pouchert,
C. E., Ed.; Aldrich Chemical Co.: Milwaukee, WI.
(20) Jones, T. H.; Blum, M. S.; Escoubas, P.; Musthak Ali, T. M. J. Nat.
Prod. 1989, 52, 779-784.
(21) Jones, T. H.; Blum, M. S.; Fales, H. M. Tetrahedron Lett. 1979,
1031-1034.
(22) Spande, T. F.; Daly, J. W.; Hart, D. J.; Tsai, Y.-M.; McDonald, T.
L. Experientia 1981, 37, 1242-1244.
(23) Tokuyama, T.; Nishimori, N.; Karle, I. L.; Edwards, M. W.; Daly,
J. W. Tetrahedron 1986, 42, 3453-3460.
(24) Lions, F.; Willison, A. M. J. Proc. Roy. Soc. New South Wales 1940,
73, 240-252.
(25) Smith, A. L.; Williams, S. F.; Holmes, A. B.; Hughes, L. R.; Lidert,
Z.; Swithenbank, C. J. Am. Chem. Soc. 1988, 110, 8696-8698.
(26) Daly, J. W. In Progress in the Chemistry of Organic Natural
Products, Vol. 41; Herz, W., Grisebach, H., Kirby, G. W., Eds.;
Springer-Verlag: Vienna, 1982; pp 205-340.
(27) Garraffo, H. M.; Simon, L. D.; Daly, J. W.; Spande, T. F.; Jones, T.
H. Tetrahedron 1994, 50, 11329-11338 (see particularly ref 11 cited
therein).
(28) Garraffo, H. M.; Spande, T. F.; Jones, T. H.; Daly, J. W. Rapid
Commun. Mass Spectrom. 1999, 13, 1553-1563.
(29) Garraffo, H. M.; Jain, P.; Spande, T. F.; Daly, J. W.; Jones, T. H.;
Smith, L. J.; Zottig, V. E. J. Nat. Prod. 2001, 64, 421-427.
(30) Jefford, C. W. Pure Appl. Chem. 1996, 68, 799-804.
(31) Gorman, J. S. T.; Jones, T. H.; Spande; T. F.; Snelling, R. R.; Torres,
J. A.; Garraffo, H. M. J. Chem. Ecol. 1998, 24, 933-943.
762 cm-1
.