C O M M U N I C A T I O N S
Acknowledgment. This work was supported by the National
Institutes of Health (GM58822). We thank S.E. Denmark for use
of the SFC equipment.
Supporting Information Available: Synthetic routes and experi-
mental procedures for all transformations that produced previously
unknown compounds as well as their full spectral characterization. This
References
(1) For selected examples, see: (a) Bodanszky, M.; Scozzie, J. A.; Muramatsu,
I. J. Antibiot. 1970, 23, 9-12. (b) Berdy, J. AdV. Appl. Microbiol. 1974,
18, 309-406. (c) Tori, K.; Tokura, K.; Okabe, K.; Ebata, M.; Otsuka,
H.; Lukacs, G. Tetrahedron Lett. 1976, 3, 185-188. (d) Pascard, C.;
Ducruix, A.; Lunel, J.; Prange´, T. J. Am. Chem. Soc. 1977, 99, 6418-
6423. (e) Pearce, C. J.; Rinehart, K. L., Jr. J. Am. Chem. Soc. 1979, 101,
5069-5070. (f) Pedras, M. S. C.; Taylor, J. T.; Nakashima, T. T. J. Org.
Chem. 1993, 58, 4778-4780. (g) Hamann, M. T.; Scheuer, P. J. J. Am.
Chem. Soc. 1993, 115, 5825-5826. (h) Lau, R. C.; Rinehart, K. L., Jr. J.
Antibiot. 1994, 47, 1466-1472. For selected synthetic studies, see: (i)
Snider, B. B.; Zeng, H. J. Org. Chem. 2003, 68, 545-563. (j) Nicolaou,
K. C.; Zak, M.; Safina, B. S.; Lee, S. H.; Estrada, A. A. Angew. Chem.,
Int. Ed. 2004, 43, 5092-5097. (k) Ley, S. V.; Priour, A.; Heusser, C.
Org. Lett. 2002, 4, 711-714.
Figure 2. MALDI-MS spectra of assays in which analogues of a truncated
LctA peptide (LctA1-43) were incubated with LctM. Substrates are shown
in red and assay products in blue. Substrates contained the following Ser/
Thr analogues at position 42: (A) 1, (B) 6, (C) 5, and (D) 9. The asterisks
denote oxidation products (+16) involving Met.
(2) (a) Palmer, D. E.; Pattaroni, C.; Nunami, K.; Chadha, R. K.; Goodman,
M.; Wakamiya, T.; Fukase, K.; Horimoto, S.; Kitazawa, M.; Fujita, H.;
Kubo, A.; Shiba, T. J. Am. Chem. Soc. 1992, 114, 5634-5642. (b)
Lombardi, A.; D’Agostino, B.; Nastri, F.; D’Andrea, L. D.; Filippelli,
A.; Falciani, M.; Rossi, F.; Pavone, V. Bioorg. Med. Chem. Lett. 1998, 8,
1153-1156. (c) Murkin, A. S.; Tanner, M. E. J. Org. Chem. 2002, 67,
8389-8394. (d) Li, B.; Yu, J.-P. J.; Brunzelle, J. S.; Moll, G. N.; van der
Donk, W. A.; Nair, S. K. Science 2006, 311, 1464-1467.
The restrictions of the active side pocket with respect to the
substituent at the â-carbon of Thr analogues are also shown with
amino acids 7 and 8. Whereas the substrate peptide incorporating
the E-alkene 7 was dehydrated, the Z-alkene 8 was not (Figure
S4).
(3) (a) Zhu, Y.; van der Donk, W. A. Org. Lett. 2001, 3, 1189-1192. (b)
Galonic, D.; van der Donk, W. A.; Gin, D. Y. Chem.sEur. J. 2003, 24,
5997-6006.
(4) (a) Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1988, 159-172. (b)
Bonauer, C.; Walenczyk, T.; Ko¨nig, B. Synthesis 2006, 1-20.
(5) Chatterjee, C.; Paul, M.; Xie, L.; van der Donk, W. A. Chem. ReV. 2005,
105, 633-684.
In addition to evaluating the tolerance to variation of the methyl
group of Thr, the importance of its stereochemistry was investigated.
Dehydration of Thr results in Z-dehydrobutyrine in all lantibiotics
investigated to date, indicating an anti elimination mechanism.5
Substitution of Ser42 with allo-Thr, if tolerated by the enzyme,
would result in formation of an E-dehydrobutyrine. In the event, a
substrate analogue peptide with allo-Thr at position 42 resulted in
two dehydrations demonstrating that allo-Thr is not a substrate and
hence that R-stereochemistry at the â-carbon is essential. The result
with allo-Thr also strongly suggests that the products with amino
acids 1, 4, 5, 6, and 7 have the Z-configuration as the proton and
the alkyl substituent on the â-carbon apparently cannot switch
binding pockets.
In a final experiment, the possibility to dehydrate (S)-â2-
homoserine (9) was investigated. Incorporation of 9 into position
42 of the LctA analogue and subsequent incubation with LctM led
to two major products. One corresponds to two dehydrations and
the second to a peptide that has undergone two dehydrations and
one phosphorylation (Figure 2D). Thus the incorporation of a
â-homoserine at the position of dehydration still results in phos-
phorylation by LctM, but the enzyme-catalyzed elimination is
prohibited.
In summary, this study describes the stereoselective synthesis
of eight Thr analogues appropriately protected for SPPS. Use of
these compounds demonstrates that the dehydratase domain of LctM
has relaxed substrate specificity with respect to the structure of the
residue to be dehydrated. Coupled with the overall substrate
promiscuity of lantibiotic dehydratases, which have been shown
to dehydrate Ser/Thr incorporated into non-lantibiotic peptides10,11
or into lantibiotic peptides at non-native positions,12,21 this class of
enzymes provides a powerful tool for engineering dehydroamino
acids into peptides and re-engineering of the structures of lanti-
biotics.
(6) Cotter, P. D.; O’Connor, P. M.; Draper, L. A.; Lawton, E. M.; Deegan,
L. H.; Hill, C.; Ross, R. P. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 18584-
18589.
(7) Paul, M.; van der Donk, W. A. MinireV. Org. Chem. 2005, 2, 23-37.
(8) Xie, L.; Miller, L. M.; Chatterjee, C.; Averin, O.; Kelleher, N. L.; van
der Donk, W. A. Science 2004, 303, 679-681.
(9) McClerren, A. L.; Cooper, L. E.; Quan, C.; Thomas, P. M.; Kelleher, N.
L.; van der Donk, W. A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17243-
17248.
(10) Rink, R.; Kuipers, A.; de Boef, E.; Leenhouts, K. J.; Driessen, A. J.; Moll,
G. N.; Kuipers, O. P. Biochemistry 2005, 44, 8873-8882.
(11) Kluskens, L. D.; Kuipers, A.; Rink, R.; de Boef, E.; Fekken, S.; Driessen,
A. J.; Kuipers, O. P.; Moll, G. N. Biochemistry 2005, 44, 12827-12834.
(12) Chatterjee, C.; Patton, G. C.; Cooper, L.; Paul, M.; van der Donk, W. A.
Chem. Biol. 2006, 13, 1109-1117.
(13) For detailed experimental procedures, see the Supporting Information, and
for synthesis of 4 and 9, see: Zhang, X.; Ni, W.; van der Donk, W. A. J.
Org. Chem. 2005, 70, 6685-6692.
(14) Garner, P.; Park, J. M. Org. Synth. 1991, 70, 18.
(15) In addition to their application for probing the dehydratase substrate
specificity, these procedures provide convenient access to the natural
products 2-amino-3-hydroxy pentanoic acid 1 (or 3-hydroxynorvaline,
HNV), 5, and 6. 1 is produced by bacteria and incorporated into
antimicrobial peptides such as cycloheptamycin as well as into tRNA,
and 5 and 6 have been isolated from the fungi Sclerotium rolfsii and
Tricholomopsis rutilans. See: (a) Godtfredsen, W. O.; Vangedal, S.;
Thomas, D. W. Tetrahedron 1970, 26, 4931-4946. (b) Reddy, D. M.;
Crain, P. F.; Edmonds, C. G.; Gupta, R.; Hashizume, T.; Stetter, K. O.;
Widdel, F.; McCloskey, J. A. Nucleic Acids Res. 1992, 20, 5607-5615.
(c) Niimura, Y.; Hatanaka, S.-I. Phytochemistry 1974, 13, 175. (d)
Potgieter, H. C.; Vermeulen, N. M. J.; Potgieter, D. J. J.; Strauss, H. F.
Phytochemistry 1977, 16, 1757. (e) Minoru, S.; Tetsuji, M.; Shuichi, I. J.
Antibiot. 1986, 39, 304.
(16) Evans, T. C., Jr.; Xu, M. Q. Biopolymers 1999, 51, 333-342.
(17) Ayers, B.; Blaschke, U. K.; Camarero, J. A.; Cotton, G. J.; Holford, M.;
Muir, T. W. Biopolymers 1999, 51, 343-354.
(18) Chatterjee, C.; Miller, L. M.; Leung, Y. L.; Xie, L.; Yi, M.; Kelleher, N.
L.; van der Donk, W. A. J. Am. Chem. Soc. 2005, 127, 15332-15333.
(19) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science 1994,
266, 776-779.
(20) Dawson, P. E.; Kent, S. B. H. Annu. ReV. Biochem. 2000, 69, 923-960.
(21) (a) Kuipers, O. P.; Rollema, H. S.; Yap, W. M.; Boot, H. J.; Siezen, R.
J.; de Vos, W. M. J. Biol. Chem. 1992, 267, 24340-24346. (b) Bierbaum,
G.; Szekat, C.; Josten, M.; Heidrich, C.; Kempter, C.; Jung, G.; Sahl, H.
G. Appl. EnViron. Microbiol. 1996, 62, 385-392.
JA067672V
9
J. AM. CHEM. SOC. VOL. 129, NO. 8, 2007 2213