Dehydration–Oxidation of Tertiary Cycloalcohols
[4]
[5]
a) K. Hayashi, H. Tanimoto, H. Zhang, T. Morimoto, Y. Nishi-
yama, K. Kakiuchi, Org. Lett. 2012, 14, 5728; b) T. Ohshima,
H. Tadaoka, K. Hori, N. Sayo, K. Mashima, Chem. Eur. J.
2008, 14, 2060.
a) Y. Qiu, Z. W. Deng, M. Xu, Q. Li, W. H. Liu, Steroids 2008,
73, 1500; b) Y. Tomono, H. Hirota, Y. Imahara, N. Fusetani,
J. Nat. Prod. 1999, 62, 1538; c) J. Saez, W. Cardona, D. Espinal,
S. Blair, J. Mesa, M. Bocar, A. Jossang, Tetrahedron 1998, 54,
10771; d) J. Rodriguez, L. Nunez, S. Peixinho, C. Jimenez, Tet-
rahedron Lett. 1997, 38, 1833; e) L. Garrido, E. Zubia, M. J.
Ortega, J. Salva, Steroids 2000, 65, 85.
a) D.-W. Huang, Y.-H. Lo, Y.-H. Liu, S.-M. Peng, S.-T. Liu,
Organometallics 2013, 32, 4009; b) Y. Li, T. B. Lee, T. Wang,
A. V. Gamble, A. E. V. Gorden, J. Org. Chem. 2012, 77, 4628;
c) Y. Zhao, Y.-Y. Yeung, Org. Lett. 2010, 12, 2128; d) T. K. M.
Shing, Y.-Y. Yeung, P. L. Su, Org. Lett. 2006, 8, 3149; e) J.-M.
Vatèle, Tetrahedron 2010, 66, 904; f) M. Shibuya, M. Tomizawa,
Y. Iwabuchi, Org. Lett. 2008, 10, 4715; g) M. Shibuya, M. Tom-
izawa, Y. Iwabuchi, J. Org. Chem. 2008, 73, 4750; h) M. Shib-
uya, S. Ito, M. Takahashi, Y. Iwabuchi, Org. Lett. 2004, 6,
4303; i) M. Uyanik, R. Fukatsu, K. Ishihara, Org. Lett. 2009,
11, 3470; j) A. L. Gottumukkala, J. F. Teichert, D. Heijnen, N.
Eisink, S. van Dijk, C. Ferrer, A. van den Hoogenband, A. J.
Minnaard, J. Org. Chem. 2011, 76, 3498; k) S. E. Walker, J.
Boehnke, P. E. Glen, S. Levey, L. Patrick, J. A. Jorden-Hore,
A.-L. Lee, Org. Lett. 2013, 15, 1886; l) C.-H. Xing, J.-R. Lee,
Z.-Y. Tang, J.-R. Zheng, Q.-S. Hu, Adv. Synth. Catal. 2011,
353, 2051; m) W. J. Kerr, C. M. Oearson, G. J. Thurston, Org.
Biomol. Chem. 2006, 4, 47; n) A. Buzas, F. Gagosz, J. Am.
Chem. Soc. 2006, 128, 12614; o) T. Diao, S. S. Stahl, J. Am.
Chem. Soc. 2011, 133, 14566; p) M. Hayashi, M. Shibuya, Y.
Iwabuchi, Org. Lett. 2012, 14, 154; q) G.-J. Jiang, X.-F. Fu, Q.
Li, Z.-X. Yu, Org. Lett. 2012, 14, 692.
The solvent was evaporated under vacuum, and the residue was
purified by column chromatography on silica gel (100–200 mesh;
petroleum ether/EtOAc, 6:1) to give pure 2a (29.3 mg, 85%). No
formation of 2a-18O was detected by GC–MS analysis.
Reaction of 1a Under an 18O2 Atmosphere: Compound 1a (35.3 mg,
0.2 mmol), Cu0 powder (0.64 mg, 5 mol-%), Selectfluor (141.7 mg,
0.4 mmol, 2 equiv.), and anhydrous CH3CN (2 mL) were added to
a 10 mL flask equipped with a high-vacuum PTFE valve-to-glass
seal. The mixture was opened to the vacuum (high vacuum) and
pumped for 2–3 min. Then the flask was backfilled with 18O2 gas.
The reaction mixture was stirred at room temperature for 24 h.
Upon completion, the mixture was diluted with CH2Cl2 (10 mL),
and filtered through Celite. The solvent was evaporated under vac-
uum, and the residue was purified by column chromatography on
silica gel (100–200 mesh; petroleum ether/EtOAc, 6:1) to give pure
2a (28.6 mg, 83%). GC–MS analysis showed that the 18O-en-
richment in 2a was 48 %.
[6]
Effect of the Radical Scavenger TEMPO on the Model Reaction:
Compound 1a (35.3 mg, 0.2 mmol), Cu0 powder (0.64 mg, 5 mol-
%), Selectfluor (141.7 mg, 0.4 mmol, 2 equiv.), TEMPO (15.6 mg,
0.5 equiv.; or 62.5 mg, 2 equiv.), and anhydrous CH3CN (2 mL)
were added to a 10 mL flask. The reaction mixture was stirred at
room temperature for 24 h. Upon completion, the mixture was di-
luted with CH2Cl2 (10 mL), and filtered through Celite. The solvent
was evaporated under vacuum, and the residue was purified by
column chromatography on silica gel (100–200 mesh; petroleum
ether/EtOAc, 6:1) to give pure 2a. In the presence of 0.5 and
2 equiv. of TEMPO, 2a was obtained in 22 and 0% yield, respec-
tively.
[7]
[8]
a) M. M. Garazd, Y. L. Garazd, V. P. Khilya, Chem. Nat.
Compd. 2003, 39, 54; b) M. M. Garazd, Y. L. Garazd, V. P.
Khilya, Khim. Prir. Soedin. 2003, 39, 47.
S. B. Combes, P. Barbier, S. Douillard, A. McLeer-Florin, V. R.
Bourgarel-Rey, J.-T. Pierson, A. Y. Fedorov, J.-P. Finet, J. Bou-
tonnat, V. Peyrot, J. Med. Chem. 2011, 54, 3153.
Conversion of 2a or 9 into 3a Under the Standard Conditions: Com-
pound 2a (34.4 mg, 0.2 mmol) or 9 (31.6 mg, 0.2 mmol), Cu0 pow-
der (0.64 mg, 5 mol-%), Selectfluor (177.1 mg, 0.5 mmol,
2.5 equiv.), and anhydrous CH3CN (2 mL) were added to a 10 mL
flask. Then the reaction mixture was stirred at 80 °C for 24 h. Upon
completion, the mixture was diluted with CH2Cl2 (10 mL), and fil-
tered through Celite. The solvent was evaporated under vacuum,
and the residue was purified by column chromatography on silica
gel (100–200 mesh; petroleum ether/EtOAc, 6:1) to give pure 3a (2a
as the substrate: 0%; 9 as the substrate: 27.7 mg, 90%).
[9]
[10]
T. Taechowisan, Microbiology 2005, 151, 1691.
R. Argotte-Ramos, G. Ramírez-Avila, M. del C. Rodríguez-
Gutiérrez, M. Ovilla-Munˇoz, H. Lanz-Mendoza, M. H.
Rodríguez, M. González-Cortazar, L. Alvarez, J. Nat. Prod.
2006, 69, 1442.
[11]
[12]
[13]
T. Pengsuparp, M. Serit, S. H. Hughes, D. D. Soejarto, J. M.
Pezzuto, J. Nat. Prod. 1996, 59, 839.
T. Taechowisan, C. Lu, Y. Shen, S. Lumyong, J. Cancer Res.
Ther. 2007, 3, 86.
J.-T. Pierson, A. Dumètre, S. Hutter, F. Delmas, M. Laget, J.-
P. Finet, N. Azas, S. Combes, Eur. J. Med. Chem. 2010, 45,
864.
Supporting Information (see footnote on the first page of this arti-
1
cle): Charts for mechanistic studies as well as copies of H and 13
C
NMR spectra of the products.
Acknowledgments
[14]
R. Korec, K. H. Sensch, T. Zoukas, Arzneim.-Forsch. 2000, 50,
122.
P. Marçal de Queiroz, WO 98/25608, 1997.
M. M. Garazd, Ya. L. Garazd, V. P. Khilya, Chem. Nat.
Compd. 2005, 41, 245.
The authors are grateful to the National Natural Science Founda-
tion of China (NSFC) (grant numbers 21172197 and 21372201),
Zhejiang Province (grant number Y407168), and the Opening
Foundation of Zhejiang Key Course of Chemical Engineering and
Technology, Zhejiang University of Technology for financial sup-
port.
[15]
[16]
[17]
a) Y. Yamamoto, N. Kirai, Org. Lett. 2008, 10, 5513; b) C. E.
Song, D. U. Jung, S. Y. Choung, E. J. Roh, S.-G. Lee, Angew.
Chem. Int. Ed. 2004, 43, 6183; Angew. Chem. 2004, 116, 6309;
c) K. Sasano, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2013,
135, 10954; d) Z. J. Shi, C. He, J. Org. Chem. 2004, 69, 3669.
a) L. Zhang, T. Meng, R. Fan, J. Wu, J. Org. Chem. 2007, 72,
7278; b) M. L. N. Rao, V. Venkatesh, D. N. Jadhav, Eur. J. Org.
Chem. 2010, 3945; c) S. Oh, H. J. Jang, S. K. Ko, Y. Ko, S. B.
Park, J. Comb. Chem. 2010, 12, 548; d) P. Y. Wong, W. K.
Chow, K. H. Chung, C. M. So, C. P. Lau, F. Y. Kwong, Chem.
Commun. 2011, 47, 8328; e) C.-H. Xing, J.-R. Lee, Z.-Y. Tang,
J. R. Zheng, Q.-S. Hu, Adv. Synth. Catal. 2011, 353, 2051; f) J.
Wu, Z. Yang, J. Org. Chem. 2001, 66, 7875; g) L. Xu, B.-J. Li,
Z.-H. Wu, X.-Y. Lu, B.-T. Guan, B.-Q. Wang, K.-Q. Zhao,
[1] a) T. Kitanosoni, P. Xu, S. Kobayashi, Chem. Asian J. 2014, 9,
179; b) D. Müller, A. Alexakis, Org. Lett. 2013, 15, 1594; c) P.
[18]
Kwiatkowski, K. Dudzin´ski, D. Łyzwa, Org. Lett. 2011, 13,
˙
3624; d) S. Kehrli, D. Martin, D. Rix, M. Mauduit, A.
Alexakis, Chem. Eur. J. 2010, 16, 9890.
[2] a) X. Feng, Z. Zhou, R. Zhou, Q.-Q. Zhou, L. Dong, Y.-C.
Chen, J. Am. Chem. Soc. 2012, 134, 19942; b) D. G. Gassman,
D. A. Singleton, J. Org. Chem. 1986, 51, 3075.
[3] a) W. P. Hong, A. V. Iosub, S. S. Stahl, J. Am. Chem. Soc. 2013,
135, 13664; b) Y. Izawa, C. Zheng, S. S. Stahl, Angew. Chem.
Int. Ed. 2013, 52, 3672; Angew. Chem. 2013, 125, 3760.
Eur. J. Org. Chem. 2015, 5381–5388
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5387