K. Yoshizawa, T. Shioiri / Tetrahedron Letters 46 (2005) 7059–7063
7063
R.; Popelis, J.; Mazeika, I.; Lukevics, E. J. Organomet.
Chem. 1999, 586, 184–189.
Acknowledgments
6. For recent reports about the Morita–Baylis–Hillman
reactions and applications, see: (a) Basavaiah, D.; Rao,
A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891;
(b) Yeo, J. E.; Yang, X. L.; Kim, H. J.; Koo, S. Chem.
Commun. 2004, 236–237; (c) Xue, S.; He, L.; Han, K.-Z.;
Liu, Y.-K.; Guo, Q.-X. Synlett 2005, 1247–1250, and
references cited therein.
We thank Eisai Co., Ltd., for partial support of this
research and financial support to K.Y. This work was
also financially supported in part by a Grant-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science, and Technology, Japan.
7. The addition of a-silyl-a,b-unsaturated ketones to alde-
hydes catalyzed by TBAF affords the Morita–Baylis–
Hillman-type adduct. See: Matsumoto, K.; Oshima, K.;
Utimoto, K. Chem. Lett. 1994, 1211–1214.
8. The quaternary ammonium acetylide was considered to be
generated in situ. Isolation or physical evidence of the
quaternary ammonium acetylide has not been reported.
See: Ishikawa, T.; Mizuta, T.; Hagiwara, K.; Aikawa, T.;
Kudo, T.; Saito, S. J. Org. Chem. 2003, 68, 3702–3705.
9. The use of anhydrous TBAF also gave the addition
product 4 as the major one. For the preparation of
anhydrous TBAF, see: Sun, H.; DiMagno, S. G. J. Am.
Chem. Soc. 2005, 127, 2050–2051.
References and notes
1. (a) Colonna, S.; Hiemstra, H. H.; Wynberg, H. J. Chem.
Soc., Chem. Commun. 1978, 238–239; (b) Ando, A.;
Miura, T.; Tatematsu, T.; Shioiri, T. Tetrahedron Lett.
1993, 34, 1507–1510; (c) Iseki, K.; Nagai, T.; Kobayashi,
Y. Tetrahedron Lett. 1994, 35, 3137–3138; (d) Shioiri, T.;
Bohsako, A.; Ando, A. Heterocycles 1996, 42, 93–97; (e)
Shioiri, T.; Ando, A.; Masui, M.; Miura, T.; Tatematsu,
T.; Bohsako, A.; Higashiyama, M.; Asakura, C. In Phase-
Transfer Catalysis: Mechanism and Syntheses; Halpern,
M. E., Ed.; ACS Symposium Series 659; American
Chemical Society: Washington, DC, 1997; Chapter 11;
(f) Horikawa, M.; Bush-Peterson, J.; Corey, E. J. Tetra-
hedron Lett. 1999, 40, 3843–3846; (g) Corey, E. J.; Zhang,
F.-Y. Angew. Chem., Int. Ed. 1999, 38, 1931–1934; (h)
Corey, E. J.; Zhang, F.-Y. Org. Lett. 2000, 2, 4257–4259;
(i) Bluet, G.; Campagne, J.-M. J. Org. Chem. 2001, 66,
4293–4298; (j) Caron, S.; Do, N. M.; Arpin, P.; Larivee, A.
Synthesis 2003, 1693–1698.
10. Trost, B. M.; Oi, S. J. Am. Chem. Soc. 2001, 123, 1230–
1231.
11. It was recognized that the silyl ether of the Z-isomer 9
isomerized to the E-isomer under basic conditions. For
isomerization of the derivative of 2-benzylidene-1-inda-
none, see: (a) Pearson, B. D.; Ayer, R. P.; Cromwell, N. H.
J. Org. Chem. 1962, 27, 3038–3044; (b) Kevill, D. N.;
Weiler, E. D.; Cromwell, N. H. J. Org. Chem. 1964, 29,
1276–1278.
2. For other chiral quaternally ammonium fluorides, see:
Ooi, T.; Maruoka, K. Acc. Chem. Res. 2004, 37, 526–533.
3. Li, H.-Y. In Encyclopedia of Reagents for Organic
Synthesis; Paquette, L. A., Ed.; John Wiley & Sons: New
York, 1995; Vol. 7, pp 4728–4732.
4. Bohsako, A.; Asakura, C.; Shioiri, T. Synlett 1995, 1033–
1034.
5. (a) Nakamura, E.; Kuwajima, I. Angew. Chem., Int. Ed.
Engl. 1976, 15, 498–499; (b) Holmes, A. B.; Jennings-
White, C. L. D.; Schulthess, A. H. J. Chem. Soc., Chem.
Commun. 1979, 840–842; (c) Abele, E.; Rubina, K.; Abele,
12. Silyl allenolates afford Morita–Hillman-type adducts, see:
(a) Kato, M.; Kuwajima, I. Bull. Chem. Soc. 1984, 57,
827–830; (b) Tius, M. A.; Hu, H. Tetrahedron Lett. 1998,
39, 5937–5940; (c) Kaur, A.; Kaur, G.; Trehan, S. Indian J.
Chem. 1998, 37B, 1048–1050; (d) Stergiades, I. A.; Tius,
M. A. J. Org. Chem. 1999, 64, 7547–7551; (e) Li, G.; Wei,
H.-X.; Phelps, B. S.; Purkiss, D. W.; Kim, S. H. Org. Lett.
2001, 3, 823–826; For the synthesis of allenes by isomer-
ization, see: (f) Modern Allene Chemistry; Krause, N.,
Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, 2004;
Vol. 1.