C O M M U N I C A T I O N S
Table 1. Ni-Catalyzed Asymmetric Reductive Coupling of
1,4-Diphenylbuta-1,3-diene (1) with Benzaldehydea
Scheme 2
entry
ligand
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
9
10
11d
12e
13f
(R)-SIPHOS
(R)-ShiP
(R)-FuP
(R)-SITCP
(S)-MonoPhos
(R)-4b
(R)-4c
(R)-4d
(R)-4e
(R)-4f
99
95
92
93
95
99
99
96
96
99
95
99
89
45
5
37
40
38
72
82
76
78
96
88
92
90
enantioselective in this reductive coupling reaction. To extend the
scope of the reaction, ethyl 5-phenylpenta-2,4-dienoate was inves-
tigated. By coupling with benzaldehyde, the corresponding coupling
product was obtained in high yield, excellent anti selectivity, albeit
with moderate enantiomeric excess (Scheme 2).12
(R)-4f
(R)-4f
(R)-4f
In conclusion, we have disclosed the first catalytic asymmetric
intermolecular reductive coupling of 1,3-dienes and aldehydes. By
using nickel complexes with bulky spirobiindane phosphoramidite
ligands as catalysts and Et2Zn as a reducing reagent, chiral
bishomoallylic alcohols were produced in high yields with excellent
diastereoselectivities and enantioselectivities.
a Reaction conditions: Ni(acac)2/ligand/1/2a/Et2Zn ) 0.006/0.0072/ 0.12/
0.24/0.28 (mmol) in toluene (1.2 mL), 25 °C, under argon, 1.0 h. b Isolated
yield. The anti/syn ratio was >99/1 in all cases. c Enantioselectivity of the
anti-isomer was determined on HPLC using a Chiralpak AD-H column.d 1
mol % of catalyst was used, 8 h. e Ni(COD)2 was used. f NiBr2 was used.
Acknowledgment. We thank the National Natural Science
Foundation of China for financial support.
Table 2. Ni-Catalyzed Asymmetric Reductive Coupling of
1,4-Diphenylbuta-1,3-diene (1) with Different Aldehydes 2a
Supporting Information Available: Experimental procedures, the
characterizations of ligands and products, and the analysis of ee values
of products (PDF). This material is available free of charge via the
entry
Ar
product
yield (%)
anti/syn
ee (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Ph
3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
3l
3m
3n
99
95
98
94
99
95
94
85
92
98
94
96
96
98
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
99:1
>99:1
>99:1
98:2
>99:1
>99:1
>99:1
96
93
91
94
92
95
96
96
90
85
93
86
92
91
o-MeC6H4
o-MeOC6H4
m-MeC6H4
m-MeOC6H4
p-MeC6H4
p-MeOC6H4
p-Me2NC6H4
p-ClC6H4
p-CF3C6H4
1-naphthyl
2-naphthyl
2-furyl
References
(1) For reviews, see: (a) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757. (b)
Denmark, S. E.; Fu, J.-P. Chem. ReV. 2003, 103, 2763.
(2) (a) Janza, B.; Studer, A. J. Org. Chem. 2005, 70, 6991. (b) Seebach, D.;
Marti, R. E.; Hintermann, T. HelV. Chim. Acta 1996, 79, 1710.
(3) For reviews on the Ni-catalyzed dienes-carbonyl reductive coupling,
see: (a) Modern Organo Nickel Chemistry; Tamaru, Y., Ed.; Wiley-
VCH: Weinheim, Germany, 2005. (b) Tamaru, Y. J. Organomet. Chem.
1999, 576, 215. (c) Ikeda, S. Angew. Chem., Int. Ed. 2003, 42, 5120. (d)
Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 2. For dienes-carbonyl
reductive couplings catalyzed by other transition metals, see: (e) Takai,
K.; Toratsu, C. J. Org. Chem. 1998, 63, 6450. (f) Jang, H.-Y.; Huddleston,
R. R.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 4074.
(4) (a) Sato, Y.; Takimoto, M.; Hayashi, K.; Katsuhara, T.; Takagi, K.; Mori,
M. J. Am. Chem. Soc. 1994, 116, 9771. (b) Sato, Y.; Takimoto, M.; Mori,
M. J. Am. Chem. Soc. 2000, 122, 1624. (c) Sato, Y.; Sawaki, R.; Saito,
N.; Mori, M. J. Org. Chem. 2002, 67, 656.
2-thiophyl
a Reaction conditions were the same as those in Table 1, entry 10. For
analysis, see Supporting Information.
(5) (a) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc.
1998, 120, 4033. (b) Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata, K.;
Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1999,
38, 397. (c) Shibata, K.; Kimura, M.; Shimizu, M.; Tamaru, Y. Org. Lett.
2001, 3, 2181. (d) Kimura, M.; Ezoe, A.; Mori, M.; Iwata, K.; Tamaru,
Y. J. J. Am. Chem. Soc. 2006, 128, 8559.
on the N atom of ligand 4c, no enhancement of enantioselectivity
was observed in the reductive coupling reaction. However, the
enantioselectivity of the nickel-catalyzed reductive coupling reaction
of 1,4-diphenylbuta-1,3-diene (1) with benzaldehyde was remark-
ably increased to 96% ee using the phosphoramidite ligand 4f,
which has a morpholine as the amine moiety. With ligand 4f, other
nickel compounds such as Ni(COD)2 and NiBr2 were also shown
to be efficient catalyst precursors.
Using ligand 4f, a variety of aldehydes can be coupled with 1,4-
diphenylbuta-1,3-diene (1) in excellent diastereoselectivities and
enantioselectivities (Table 2). All aromatic aldehyde substrates
underwent the reductive coupling reaction in extremely high yields
and diastereoselectivities regardless of the nature and the position
of the substituents. Generally, an electron-donating substituent such
as OMe and NMe2 at the para position slightly enhanced enantio-
selectivity, while an electron-withdrawing substituent such as Cl
and CF3 at the para position diminished the enantioselectivity. In
addition to benzaldehyde and its derivatives, naphthaldehyde, furan-
2-carbaldehyde, and thiophene-2-carbaldehyde can also be coupled
with 1,3-diene 1 to afford the corresponding bishomoallylic alcohols
in high enantioselectivities. However, butyraldehyde gave the
desired bishomoallylic alcohol in only 72% ee under identical
reaction conditions, showing that the aliphatic aldehydes are less
(6) (a) Sato, Y.; Saito, N.; Mori, M. J. Am. Chem. Soc. 2000, 122, 2371. (b)
Sato, Y.; Saito, N.; Mori, M. J. Org. Chem. 2002, 67, 9310.
(7) For Ni-catalyzed asymmetric reductive coupling of alkynes and enynes,
see: (a) Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc.
2003, 125, 3442. (b) Miller, K. M.; Jamison, T. F. Org. Lett. 2005, 7,
3077. (c) Miller, K. M.; Colby, E. A.; Woodin, K. S.; Jamison, T. F.
AdV. Synth. Catal. 2005, 347, 1533. For Rh-catalyzed asymmetric reductive
coupling of enynes, see: (d) Komanduri, V.; Krische, M. J. J. Am. Chem.
Soc. 2006, 128, 16448.
(8) (a) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L.
Chem. Commun. 2002, 480. (b) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.;
Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348. (c)
Hou, G.-H.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2006,
128, 11774.
(9) (a) Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett.
2005, 7, 2333. (b) Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org.
Lett. 2006, 8, 2567. (c) Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou,
G.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 2780.
(10) For the mechanism of Ni-catalyzed reductive coupling of dienes and
carbonyl compounds, see: Ogoshi, S.; Tonomori, K.-J.; Oka, M.-A.;
Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 7077. See also ref 5.
(11) For the details of preparation and analysis of new ligands, see Supporting
Information.
(12) The coupling of aliphatic dienes such as 1,3-butadiene and 2-methyl-1,3-
butadiene with benzaldehyde gave a mixture of bishomoallylic alcohol
and homoallylic alcohol with low regioselectivity and enantioselectivity.
JA0693183
9
J. AM. CHEM. SOC. VOL. 129, NO. 8, 2007 2249