Mendeleev Commun., 2015, 25, 47–48
protocol is employed for cleavage of aegPNA (‘low-high
This work was supported by the Ministry of Education and
Science of the Russian Federation (grant no. 4.128.2014/K).
TfOH’30), the isomeric a-PNAs oligomers underwent degradation
to amide bonds, so it is preferably to use the deblocking cocktail
including scavengers based on trialkylsilanes for their cleavage
from the polymer support.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2015.01.017.
The cleavage of tetramer ACAgꢀT was carried out using two
deblocking protocols: (I) the standard ‘low-high TfOH’ treat-
ment of resin with solution of ‘low TfOH’–TFA/m-cresol/DMS/
TfOH (11:2:6:1, by volume) for 15 min at 0°C and solution
‘high TfOH’–TFA/m-cresol/TfOH (8:1:1, by volume) for 20 min
at 0°C with preliminary cooling of resin to –30°C and (II)
mixture TFA/TfOH/Pri3SiH (3:1:0.1, by volume) for 45 min at
0°C with preliminary cooling of resin to –30°C.29 RP HPLC of
produced reaction mixture are presented in Figure 2. In case of
employing protocol II with Pri3SiH, the formation of side pro-
ducts was not observed. The yield of oligomer was 31% after
purification by preparative RP HPLC. The initial loading of MBHA
resin was 0.14 mmol g–1. It was 0.114 mmol g–1 after four con-
densation stages.31 Therefore, the average yield of condensation
cycle was 95% before the cleavage of oligomer from resin, which
is similar to that for aeg-PNAs26 (97%). Thus, the major losses
occur on the final deblocking step and cleavage from the resin,
though the average coupling yield is 75% in this case. It is
important to note that earlier synthesis of a- and g-carboxyethyl
thymine decamers gave very low overall yields (0.2% and 0.7%,
respectively; the results will be published elsewhere).
References
1 P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt, Science, 1991,
254, 1497.
2 P. E. Nielsen, Chem. Biodiversity, 2010, 7, 786.
3 E. Uhlmann, A. Peyman, G. Breipohl and D.W. Will, Angew. Chem. Int.
Ed., 1998, 37, 2796.
4 R. Corradini, S. Sforza, T. Tedeschi, F. Totsingan, A. Manicardi and
R. Marchelli, Curr. Top. Med. Chem., 2011, 11, 1535.
5 A. Dragulescu-Andrasi, S. Rapireddy, B. M. Frezza, C. Gayathri, R. R. Gil
and D. H. Ly, J. Am. Chem. Soc., 2006, 128, 10258.
6 B. Sahu, I. Sacui, S. Rapireddy, K. J. Zanotti, R. Bahal, B. A. Armitage
and D. H. Ly, J. Org. Chem., 2011, 76, 5614.
7 T. Shiraishi and P. E. Nielsen, in Peptide Nucleic Acids. Methods and
Protocols, 2nd edn., eds. P. E. Nielsen and D. H. Appella, Humana Press,
New York, 2014, ch. 16, p. 193.
8 P. J. Deuss, A. A. Arzumanov, D. L. Williams and M. J. Gait, Org.
Biomol. Chem., 2013, 11, 7621.
9 H. Kim, K. Hyun Lee, K. B. Kim, Y. S. Park, K.-S. Kim and D.-E. Kim,
Bull. Korean Chem. Soc., 2013, 34, 735.
10 R. Bahal, B. Sahu, S. Rapireddy, C-M. Lee and D. H. Ly, ChemBioChem,
2012, 13, 56.
11 N. Tilani, S. De Costa and J. M. Heemstra, PLoS One, 2013, 8, e58670.
12 T. Shiraishi, R. Hamzavi and P. E. Nielsen, Nucleic Acids Res., 2008,
36, 4424.
The hexamer CAgꢀTCAgꢀT (Figure S3, Online Supplementary
Materials) including two g-modified thymine monomers 1 was
synthesized like tetramer ACAgꢀT.† The cleavage of oligomer was
carried out with deblocking protocol II, its yield was 27% (an
average yield per oligomerization round is 81%) after purification by
RP HPLC.32 The structure of oligomers ACAgꢀT and CAgꢀTCAgꢀT
was confirmed by MALDI-TOF MS data (calc. for tetramer
[M+H]+ m/z 1156.5, found 1157.6; calc. for hexamer [M+H]+
m/z 1745.7, found 1746.5).
In conclusion, we prepared g-carboxyethyl thymine PNA
monomer by regioselective alkylation of thymine. Two new
carboxyethyl PNAs oligomers were obtained by solid phase
synthesis. Application of new deblocking protocol with Pri3SiH
and temperature control for the oligomer cleavage from the resin
provides effective oligomer synthesis.
13 C. De Cola, A. Manicardi, R. Corradini, I. Izzo and F. De Riccardis,
Tetrahedron, 2012, 68, 499.
14 C. Avitabile, L. Moggio, G. Malgieri, D. Capasso, S. Di Gaetano,
M. Saviano, C. Pedone and A. Romanelli, PLoS One, 2012, 7, e357.
15 V. A. Efimov, O. G. Chakhmakhcheva and E. Wickstrom, Nucleosides
Nucleotides Nucleic Acids, 2005, 24, 1853.
16 A. Peyman, E. Uhlmann, K. Wagner, S. Augustin, C. Weiser, D. W. Will
and G. Breipohl, Angew. Chem., Int. Ed. Engl., 1997, 36, 2809.
17 K. L. Dueholm, M. Egholm, C. Behrens, L. Christensen, H. F. Hansen,
T. Vulpius, K. H. Petersen, R. H. Berg, P. E. Nielsen and O. Buchardt,
J. Org. Chem., 1994, 59, 5767.
18 N. P. Boyarskaya,Yu. G. Kirillova, E. A. Stotland, D. I. Prokhorov, E. N.
Zvonkova and V. I. Shvets, Dokl. Chem., 2006, 408, 57 (Dokl. Akad.
Nauk, 2006, 408, 55).
19 N. P. Boyarskaya, D. I. Prokhorov,Yu. G. Kirillova, E. N. Zvonkova and
V. I. Shvets, Tetrahedron Lett., 2005, 46, 7359.
(c)
20 T. Zengeya, M. Li and E. Rozners, Bioorg. Med. Chem. Lett., 2011, 21,
2121.
800
600
400
200
0
(a)
21 R. Mitra and K. N. Ganesh, J. Org. Chem., 2012, 77, 5696.
22 P. C. Meltzer, A. Y. Liang and P. Matsudaira, J. Org. Chem., 1995, 60, 4305.
23 A. Banerjee and V. A. Kumar, Bioorg. Med. Chem., 2013, 21, 4092.
24 K. A. Cruickshank, J. Jiricny and C. B. Reese, Tetrahedron Lett., 1984,
25, 681.
300
200
100
0
13.6
250
22
300
350
400
25 S. Friedrich-Bochnitschek, H. Waldmann and H. Kunz, J. Org. Chem.,
l/nm
1989, 54, 751.
26 L. Christensen, R. Fitzpatrick, B. Gildea, K. H. Petersen, H. F. Hansen,
T. Koch, M. Egholm, O. Buchardt, P. E. Nielsen, J. Coull and R. H. Berg,
J. Pept. Sci., 1995, 1, 175.
6
10
14
18
26
Retention time/min
27 B. E. Watkins and H. Rapoport, J. Org. Chem., 1982, 47, 4471.
28 M.V. Shiryaeva,Yu. G. Kirillova, O.V. Esipova, S.V. Eremin, T.A. Lukyanov
a
6
1157.6
(d)
(b)
and V. I. Shvets, Vestnik MITKhT, 2011, 6 (2), 81 (in Russian).
29 Yu. G. Kirillova, M. V. Tankevich, D. I. Prokhorov and V. I. Shvets,
Russ. J. Org. Chem., 2013, 49, 1768 (Zh. Org. Khim., 2013, 49, 1787).
30 J. P. Tam, W. F. Heath and R. B. Merriefield, J. Am. Chem. Soc., 1986,
108, 5242.
13.6
4
1200
800
400
0
2
0
1179.6
31 E. Kaiser, R. L. Colescott, C. D. Bossinger and P. I. Cook, Anal.
1050
1150
m/z
1250
Biochem., 1970, 34, 595.
32 T. A. Luk’ianova, M. A. Zaitseva, V. A. Karpov and G. E. Pozmogova,
Russ. J. Bioorg. Chem., 2008, 34, 74 (Bioorg. Khim., 2008, 34, 83).
6
10
14
18
22
26
Retention time/min
Figure 2 Profiles of RP HPLC of reaction mixture produced when cleaved
tetramer ACAgꢀT from polymer support using deblocking protocols (a) I and
(b) II, (c) UV and (d) MALDI-TOF mass spectra of oligomer ACAgT.
Received: 21st May 2014; Com. 14/4380
– 48 –