C O M M U N I C A T I O N S
Table 2. Asymmetric Hydrogenation of Racemic R-Arylaldehydes
1 Catalyzed by (S,RR)-3ja
less than 5% deuterium observed at the â-position, thus confirming
that the hydrogenation of aldehyde with [RuCl2(SDPs)(diamine)]
catalysts occurs on the carbonyl group.13
In conclusion, this Ru-catalyzed asymmetric hydrogenation of
racemic R-arylaldehydes via dynamic kinetic resolution provided
a highly efficient and economical method for the synthesis of chiral
primary alcohols. The method shows great potential for wide
application in the synthesis of optically active pharmaceuticals and
natural products.
entry
substrate
R
Ar
ee (%)b
1
2
3
4
5
6
7
8
1a
1b
1c
1d
1e
1f
1g
1h
1i
1j
1k
1l
1m
1n
1o
Me
C6H5
C6H5
C6H5
C6H5
C6H5
78
86
Et
i-Pr
96 (91)c,d
92
c-Pent
c-Hex
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
Acknowledgment. We thank the National Natural Science
Foundation of China, and the “111” project (B06005) of the
Ministry of Education of China for financial support.
92
95
93
89
93
93
94
90
2-MeC6H4
2-ClC6H4
3-MeC6H4
3-MeOC6H4
4-MeC6H4
4-MeOC6H4
4-ClC6H4
2-Naphthyl
4-MeC6H4
4-MeOC6H4
9
Supporting Information Available: Experimental procedures, the
characterizations of substrates and products, and the analysis of ee
values of hydrogenation products (PDF). This material is available free
10
11
12
13
14
15
i-Pr
c-Hex
c-Hex
89
92
94
References
(1) (a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds. In ComprehensiVe
Asymmetric Catalysis; Springer: Berlin, 1999; Vols. 1-3. (b) Knowles,
W. S. Angew. Chem., Int. Ed. 2002, 41, 1998. (c) Noyori, R. Angew.
Chem., Int. Ed. 2002, 41, 2008.
a Reaction conditions are same as those in Table 1; 100% conversion.
b The ee values were determined by chiral GC or HPLC. The absolute
configuration was S. c The data in parentheses was obtained by using 0.02
mol % catalyst, 32 h. d An amount of 94% ee was obtained by using the
catalyst [RuCl2((R)-Xyl-BINAP)((R,R)-DACH)].
(2) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
(3) For selective examples, see: (a) Doucet, H.; Ohkuma, T.; Murata, K.;
Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.;
Noyori, R. Angew. Chem., Int. Ed. 1998, 37, 1703. (b) Ohkuma, T.;
Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama,
E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1998, 120,
13529. (c) Cao, P.; Zhang, X. J. Org. Chem. 1999, 64, 2127. (d) Burk,
M. J.; Hems, W.; Herzberg, D.; Malan, C.; Zanotti-Gerosa, A. Org. Lett.
2000, 2, 4173. (e) Wu, J.; Chen, H.; Kwok, W.-H.; Guo, R.-W.; Zhou,
Z.-Y.; Yeung, C.-H.; Chan, A. S. C. J. Org. Chem. 2002, 67, 7908. (f)
Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.;
Zhou, Q.-L. J. Am. Chem. Soc. 2003, 125, 4404. (g) Ohkuma, T.; Sandoval,
C. A.; Srinivasan, R.; Lin, Q.; Wei, Y.; Mun˜iz, K.; Noyori, R. J. Am.
Chem. Soc. 2005, 127, 8288.
Scheme 3
(4) (a) Ghanema, A.; Aboul-Enein, H. Y. Tetrahedron: Asymmetry 2004,
15, 3331. (b) Nordin, O.; Nguyen, B.-V.; Vo¨rde, C.; Hedenstro¨m, E.;
Ho¨gberg, H.-E. J. Chem. Soc., Perkin Trans. 1 2000, 367.
(5) For reviews, see: (a) Tang, W.-J.; Zhang, X.-M. Chem. ReV. 2003, 103,
3029. For selected examples, see: (b) Takaya, H.; Ohta, T.; Sayo, N.;
Kumobayashi, H.; Akutagawa, S.; Inoue, S.; Kasahara, I.; Noyori, R. J.
Am. Chem. Soc. 1987, 109, 1596. (c) Lightfood, A.; Schnider, P.; Pfaltz,
A. Angew. Chem., Int. Ed. 1998, 37, 2897. (d) Bissel, P.; Nazih, A.;
Sablong, R.; Lepoittevin, J.-P. Org. Lett. 1999, 1, 1283. (e) McIntyre, S.;
Hormann, E.; Menges, F.; Smidt, S. P.; Pfaltz, A. AdV. Synth. Catal. 2005,
347, 282.
of aldehyde 1k afforded the alcohol 2k in 94% ee (Table 2, entry
11). This product is the key intermediate for the synthesis of natural
product (1S,4S)-cis-7-methoxy-calamenene.10
(6) By this definition, the deuterated benzaldehyde (PhCDO) can be regarded
as a ketone. For asymmetric hydrogenation of 1-deuteriobenzaldehyde,
see: (a) Ohta, T.; Tsutsumi, T.; Takaya, H. J. Organomet. Chem. 1994,
484, 191. (b) Yamada. I.; Noyori, R. Org. Lett. 2000, 2, 3425.
(7) Hydrogen-transfer reduction of R-branched aldehydes has been reported,
but asymmetric version of this reaction has not been documented. (a)
Miecznikowski, J. R.; Crabtree, R.H. Organometallics 2004, 23, 629. (b)
Wu, X.; Liu, J.; Li, X.; Zanotti-Gerosa, A.; Hancock, F.; Vinci, D.; Ruan,
J.; Xiao, J. Angew. Chem., Int. Ed. 2006, 45, 6718.
(8) For reviews on dynamic kinetic resolution, see: (a) Noyori, R.; Tokunaga,
M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36. (b) Ward, R. S.
Tetrahedron: Asymmetry 1995, 6, 1475. (c) Pellissier, H. Tetrahedron
2003, 59, 8291.
The prepared chiral primary alcohols are very useful in the
synthesis of chiral pharmaceuticals, pesticides, and natural products.
For example, the alcohol 2l (90% ee) was oxidized by Jones reagent
to (S)-2-(4-chlorophenyl)-3-methylbutanoic acid ((S)-4), which is
the key chiral intermediate for the preparation of pyrethroid pesticide
(S,S)-fenvalerate, in 97% yield without loss of optical purity
(Scheme 3). Quinolylmethoxyphenyl acetic acid derivatives were
important leukotriene receptor antagonists and lipoxygenase inhibi-
tors such as BAY × 100511 and can be easily synthesized by our
method. The hydrogenation of racemic substrate 5 with catalyst
(R,SS)-3j produced the chiral primary alcohol 6 in 97% yield with
90% ee (98% ee after recrystallization). Oxidation of the alcohol 6
by NaClO2/TEMPO gave the compound BAY × 1005 in 89% yield
with 98% ee (Scheme 3).12 These examples illustrate the wide
applicability of the catalytic asymmetric hydrogenation of alde-
hydes.
(9) Xie, J.-H.; Liu, S.; Huo, X.-H.; Cheng, X.; Duan, H.-F.; Fan, B.-M.; Wang,
L.-X.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 2967.
(10) (a) Brenna, E.; Negri, C. D.; Fuganti, C.; Gatti, F. G.; Serra, S.
Tetrahedron: Asymmetry 2004, 15, 335. (b) Benincori, T.; Bruno, S.;
Celentano, G.; Pilati, T.; Ponti, A.; Rizzo, S.; Sada, M.; Sannicolo`, F.
HelV. Chim. Acta 2005, 88, 1776.
(11) Hatzemann, A.; Fruchtmann, R.; Mohrs, K. H.; Raddatz, S.; Mu¨ller-
Peddinghuas, R. Biochem. Pharmacol. 1993, 45, 101.
(12) Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J.
J.; Reider, P. J. J. Org. Chem. 1999, 64, 2564.
(13) The catalyst [RuH(BH4)((S,RR)-3j)] and Noyori catalyst [RuH(BH4)((R)-
BINAP)((R,R)-DPEN)] were prepared and used to catalyze the hydrogena-
tion of 1c under base-free conditions. Both catalysts gave <5% ee of
enantioselectivity at 40% conversion. Ohkuma, T.; Koizumi, M.; Mun˜iz,
K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508.
To determine that the asymmetric hydrogenation via DKR is
performed by hydrogenation of the carbonyl group, instead of the
enol form of aldehydes, a deuteration of 1c was carried out. The
1H NMR analysis of the hydrogenation product showed that the
majority of the deuteration took place at the R-position (58%), with
JA0680109
9
J. AM. CHEM. SOC. VOL. 129, NO. 7, 2007 1869