synthase, which catalyzes the fungal specific step in Sac-
charomyces cereVisiae and pathogenic fungi such as Cryp-
tococcus neoformans and Candida albicans in picomolar and
nanomolar concentrations and causes ceramide accumula-
tion.5 Distinct from other sphingolipid inhibitors such as
viridiofungin A, myriocin, and australifungin, khafrefungin
does not impair sphingolipid synthesis in mammals. A
convergent total synthesis of khafrefungin and its derivatives
has been achieved by Kobayashi and co-workers on the basis
of their excellent catalytic and enantioselective aldol reac-
tion.6
vinylketene silyl N,O-acetal 1b and ethyl ketone 6 from
propionaldehyde (8) and ent-1b, respectively.
The synthesis of enal 5a (Scheme 3) commenced with the
Scheme 3. Synthesis of C7-C22 Fragment
Our retrosynthetic analysis of khafrefungin (2) is outlined
in Scheme 2. Khafrefungin was divided into two fragments,
Scheme 2. Retrosynthetic Analysis
protection of commercially available methyl (R)-â-hydroxy-
isobutyrate (9) as a benzyl ether. The benzyl ether was then
subjected to a reduction using lithium aluminum hydride and
tosylation of the resulting alcohol. The Ni-catalyzed cross-
coupling reaction of tosylate 10 with a Grignard reagent using
Kambe’s protocol7 provided the benzyl ether in excellent
yield, and the benzyl group was cleanly removed by exposure
to boron trichloride to obtain chiral alcohol 11. The primary
alcohol 11 was oxidized to give aldehyde 7 using the standard
Swern conditions.8 According to the established protocol,
the vinylogous Mukaiyama aldol reaction of chiral aldehyde
7 with the vinylketene silyl N,O-acetal 1b using TiCl4, which
proceeded in the matched manifold, afforded the correspond-
the polyketide acid part 3 and the aldonic acid part 4. We
planned to couple these parts by Mitsunobu esterification.
Alcohol 4 (aldonic acid part) could be prepared from
L-xylose. Polyketide acid 3 could be assembled via the aldol
condensation of enal 5a and ethyl ketone 6 and dehydration.
We envisioned that both enal 5a and ethyl ketone 6 could
be stereoselectively prepared by the vinylogous Mukaiyama
aldol reaction. According to the above retrosynthetic analysis,
enal 5a could be accessed from chiral aldehyde 7 and the
(5) Reviews: (a) Kolter, T.; Sandhoff, K. Angew. Chem., Int. Ed. 1999,
38, 1532. See also: (b) Mandala, S. M.; Harris, G. H. Methods Enzymol.
2000, 311, 335-348. (c) Dickson, R. C. Annu. ReV. Biochem. 1998, 67,
27. (d) Other IPC inhibitors: Nagiec, M. M.; Nagiec, E. E.; Baltisberger,
J. A.; Wells, G. B.; Lester, R. L.; Dickson, R. C. J. Biol. Chem. 1997, 272,
9809. (e) Mandala, R. A.; Thornton, R. A.; Milligan, J.; Rosenbach, M.;
Garcia-Calvo, M.; Bull, H. G.; Harris, G.; Abruzzo, G. K.; Flattery, A. M.;
Gill, C. J.; Bartizal, K.; Dreikorn, S.; Kurtz, M. B. J. Biol. Chem. 1998,
273, 14942.
(6) (a) Wakabayashi, T.; Mori, K.; Kobayashi, S. J. Am. Chem. Soc.
2001, 123, 1372. (b) Kobayashi, S.; Mori, K.; Wakabayashi, T.; Yasuda,
S.; Hanada, K. J. Org. Chem. 2001, 66, 5580. (c) Nakamura, M.; Mori, Y.;
Okuyama, k.; Tanikawa, K.; Yasuda, S.; Hanada, K.; Kobayashi, S. Org.
Biomol. Chem. 2003, 1, 3362.
(7) (a) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J.
Am. Chem. Soc. 2002, 124, 4222. (b) Terao, J.; Kambe, N. Bull. Chem.
Soc. Jpn. 2006, 5, 663.
(3) For synthetic application of this methodology, see: (a) Hosokawa,
S.; Ogura, T.; Togashi, H.; Tatsuta, K. Tetrahedron Lett. 2005, 46, 333.
(b) Hosokawa, S.; Yokota, K.; Imamura, K.; Suzuki, Y.; Kawarasaki, M.;
Tatsuta, K. Tetrahedron Lett. 2006, 47, 5415. (c) Nakamura, T.; Shirokawa,
S.; Hosokawa, S.; Nakazaki, A.; Kobayashi, S. Org. Lett. 2006, 8, 677. (d)
Hosokawa, S.; Kuroda, S.; Imamura, K.; Tatsuta, K. Tetrahedron Lett. 2006,
47, 6183.
(4) Mandala, S. M.; Thornton, R. A.; Rosenbach, M.; Milligan, J.; Garcia-
Calvo, M.; Bull, H. G.; Kurtz, M. B. J. Biol. Chem. 1997, 272, 32709.
(8) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43,
2480.
850
Org. Lett., Vol. 9, No. 5, 2007