10.1002/anie.202104712
Angewandte Chemie International Edition
COMMUNICATION
337–346; c) A. Miyashita, Y. Suzuki, I. Nagasaki, C. Ishiguro, K.
Iwamoto, T. Higashino, Chem. Pharm. Bull. 1997, 45, 1254–1258.
Azobenzene: d) H. Inoue, K. Higashiura, J. Chem. Soc. Chem.
Commun. 1980, 549–550; e) C. Noonan, L. Baragwanath, S. J. Connon,
Tetrahedron Lett. 2008, 49, 4003–4006; f) C. A. Rose, K. Zeitler, Org.
Lett. 2010, 12, 4552–4555. Flavins: g) S. Shinkai, T. Yamashita, Y.
Kusano, O. Manabe, J. Org. Chem. 1980, 45, 4947–4952; h) S.
Iwahana, H. Iida, E. Yashima, Chem. Eur. J. 2011, 17, 8009–8013.
PhSSPh: i) H. Inoue, S. Tamura, J. Chem. Soc., Chem. Commun.
1986, 858–859. TEMPO: j) J. Guin, S. De Sarkar, S. Grimme, A. Studer,
Angew. Chem. Int. Ed. 2008, 47, 8727–8730; Angew. Chem. 2008, 120,
8855–8858; k) M. Ji, X. Wang, Y. N. Lim, Y.-W. Kang, H.-Y. Jang, Eur.
J. Org. Chem. 2013, 7881–7885. Diphenoquinone O1: l) S. De Sarkar,
S. Grimme, A. Studer, J. Am. Chem. Soc. 2010, 132, 1190–1191; m) S.
De Sarkar, A. Biswas, C. H. Song, A. Studer, Synthesis 2011, 1974–
1983; n) K. Lee, H. Kim, J. Hong, Angew. Chem. Int. Ed. 2012, 51,
5735–5738; Angew. Chem. 2012, 124, 5833–5836; o) R. C. Samanta,
S. De Sarkar, R. Fröhlich, S. Grimme, A. Studer, Chem. Sci. 2013, 4,
2177–2184; p) R. C. Samanta, A. Studer, Org. Chem. Front. 2014, 1,
936–939; q) M. T. Berry, D. Castrejon, J. E. Hein, Org. Lett. 2014, 16,
3676–3679; r) D. L. Cramer, S. Bera, A. Studer, Chem. Eur. J. 2016, 22,
7403–7407; s) D. Ragno, G. Di Carmine, A. Brandolese, O. Bortolini, P.
P. Giovannini, G. Fantin, M. Bertoldo, A. Massi, Chem. Eur. J. 2019, 25,
14701–14710; t) G. Di Carmine, D. Ragno, A. Massi, C. D’Agostino,
Org. Lett. 2020, 22, 4927–4931. Phenazine: u) S. Chun, Y. K. Chung,
Org. Lett. 2017, 19, 3787–3790. For thioesterification, see: v) T. Uno, T.
Inokuma, Y. Takemoto, Chem. Commun. 2012, 48, 1901–1903.
CCl3CN: w) Z. Wu, D. Jiang, J. Wang, Org. Chem. Front. 2019, 6, 688–
693.
Bertrand, D. Martin, J. Am. Chem. Soc. 2019, 141, 1109−1117; c) X. Li,
J. Xu, S.-J. Li, L.-B. Qu, Z. Li, Y. R. Chi, D. Wei, Y. Lan, Chem. Sci.
2020, 11, 7214−7225; d) for a recent review on acyl azolium vs.
iminium chemistry, see: A. Ghosh, A. T. Biju, Angew. Chem. Int. Ed.
2021, 60 doi.org/10.1002/anie.202012581; Angew. Chem. 2021, 133,
doi.org/10.1002/ange.202012581.
[13] M. S. Kharasch, B. S. Joshi, J. Org. Chem. 1957, 22, 1439–1443.
[14] W. Harnying, J.-M. Neudörfl, A. Berkessel, Org. Lett. 2020, 22,
386−390.
[15] a) M. Paul, M. Breugst, J.-M. Neudörfl, R. B. Sunoj, A. Berkessel, J. Am.
Chem. Soc. 2016, 138, 5044−5051. For selected reviews, see: b) J. P.
Wagner, P. R. Schreiner, Angew. Chem., Int. Ed. 2015, 54,
12274−12296; Angew. Chem. 2015, 127, 12446−12471; c) S. E.
Wheeler, T. J. Seguin, Y. Guan, A. C. Doney, Acc. Chem. Res. 2016,
49, 1061−1069; d) A. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste,
Nature 2017, 543, 637−646; e) J. Hermann, R. A. DiStasio, A.
Tkatchenko, Chem. Rev. 2017, 117, 4714−4758; f) M. Bursch, E.
Caldeweyher, A. Hansen, H. Neugebauer, S. Ehlert, S. Grimme, Acc.
Chem. Res. 2019, 52, 258−266.
[16] Typically, catalyst loadings of 5-20 mol% are required in NHC catalysis.
For examples of NHC-catalyzed reactions with low loadings of 0.2-1
mol%, see: a) M. He, G. J. Uc, J. W. Bode, J. Am. Chem. Soc. 2006,
128, 15088−15089; b) T. Ema, Y. Nanjo, S. Shiratori, Y. Terao, R.
Kimura, Org. Lett. 2016, 18, 5764−5767; c) K. Iwai, M. Ono, Y. Nanjo, T.
Ema, ACS Omega 2020, 5, 10207−10216.
[17] In this case, the free NHC may be generated by deprotonation of the
triazolium cation by the chloride counterion: a) J. Kaeobamrung, J.
Mahatthananchai, P. Zheng, J. W. Bode, J. Am. Chem. Soc. 2010, 132,
8810−8812. Alternatively, generation of the primary intermediate direct-
ly from the azolium salt may be envisaged: b) S. Gehrke, O. Hollócȥki,
Angew. Chem., Int. Ed. 2017, 36, 16395−16398; Angew. Chem. 2017,
129, 16613−16617; c) S. Gehrke, O. Hollócȥki, Chem. Eur. J. 2020, 26,
10140–10151.
[8]
[9]
For NHC-catalyzed oxidative esterification of aldehydes with alcohols
using electrochemistry, see: a) S. W. Tam, L. Jimenez, F. Diederich, J.
Am. Chem. Soc. 1992, 114, 1503–1505; b) E. E. Finney, K. A. Ogawa,
A. J. Boydston, J. Am. Chem. Soc. 2012, 134, 12374–12377; c) R. A.
Green, D. Pletcher, S. G. Leach, R. C. D. Brown, Org. Lett. 2015, 17,
3290–3293.
[18] For a review on proton-coupled electron transfer, see: M. Hang, V.
Huynh, T. J. Meyer, Chem. Rev. 2007, 107, 5004−5064.
For NHC-catalyzed oxidative esterification of aldehydes under air in the
presence/absence of catalytic metal catalysts, see: a) R. S. Reddy, J. N.
Rosa, L. F. Veiros, S. Caddick, P. M. P. Gois, Org. Biomol. Chem. 2011,
9, 3126–3129; b) M. Zhang, S. Zhang, G. Zhang, F. Chen, J. Cheng,
Tetrahedron Lett. 2011, 52, 2480–2483; c) E. G. Delany, C.-L. Fagan,
S. Gundala, A. Mari, T. Broja, K. Zeitler, S. J. Connon, Chem. Commun.
2013, 49, 6510–6512; d) E. G. Delany, C.-L. Fagan, S. Gundala, K.
Zeitler, S. J. Connon, Chem. Commun. 2013, 49, 6513–6515; x) J. F.
Zhao, C. Meck-Lichtenfeld, A. Studer, Adv. Synth. Catal. 2013, 355,
1098–1106; x) O. Bortolini, C. Chiappe, M. Fogagnolo, P. P. Giovannini,
A. Massi, C. S. Pomelli, D. Ragno, Chem. Commun. 2014, 50, 2008–
2011; f) L. Ta, A. Axelsson, H. Sundén, Green. Chem. 2016, 18, 686–
690; g) A. Axelsson, A. Antoine-Michard, H. Sundén, Green. Chem.
2017, 19, 2477–2481; Under O2: h) I. N. C. Kiran, K. Lalwani, A.
Sudalai, RSC Adv. 2013, 3, 1695–1698.
[19] For reviews on NHC-acid cooperative catalysis, see: a) R. De Vreese,
M. D’hooghe, Beilstein J. Org. Chem. 2012, 8, 398–402; b) M. H. Wang,
K. A. Scheidt, Angew. Chem., Int. Ed. 2016, 55, 14912−14922; Angew.
Chem. 2016, 128, 15134−15145; c) X.-Y. Chen, Z.-H. Gao, S, Ye, Acc.
Chem. Res. 2020, 53, 690-702.
[20] J. K. Mahoney, R. Jazzar, G. Royal, D. Martin, G. Bertrand, Chem. Eur.
J. 2017, 23, 6206-6212.
[21] Note that exposure of the azolium enolate 7 to stronger acids, such as
TfOH, results in clean protonation to the acyl azolium cation 6a (ref.
12a).
[10] a) R. Breslow, J. Am. Chem. Soc. 1957, 79, 1762–1763; b) R. Breslow,
J. Am. Chem. Soc. 1958, 80, 3719–3726.
[11] For the generation and characterization of Breslow intermediates, see:
a) A. Berkessel, S. Elfert, V. R. Yatham, J.-M. Neudörfl, N. E. Schlörer,
J. H. Teles, Angew. Chem. Int. Ed. 2012, 51, 12370–12374; Angew.
Chem. 2012, 124, 12537–12541; b) A. Berkessel, V. R. Yatham, S.
Elfert, J.-M. Neudörfl, Angew. Chem. Int. Ed. 2013, 52, 11158–11162;
Angew. Chem. 2013, 125, 11364–11369; c) V. R. Yatham, J.-M.
Neudörfl, N. E. Schlörer, A. Berkessel, Chem. Sci. 2015, 6, 3706–3711;
d) M. Paul, P. Sudkaow, A. Wessels, N. E. Schlörer, J.-M. Neudörfl, A.
Berkessel, Angew. Chem., Int. Ed. 2018, 57, 8310−8315; Angew.
Chem. 2018, 130, 8443−8448; e) M. Paul, J.-M. Neudörfl, A. Berkessel,
Angew. Chem., Int. Ed. 2019, 58, 10596−10600; Angew. Chem. 2019,
131, 10706−10710.
[12] For our recent study on acyl donor intermediates in NHC catalysis, see:
a) A. Biswas, J.-M. Neudörfl, N. E. Schlörer, A. Berkessel, Angew.
Chem., Int. Ed. 2021, 60, 4507−4511; Angew. Chem. 2021, 133,
4557−4561. For a recent study on intermediates in oxidative NHC
catalysis, see: b) V. Regnier, E. A. Romero, F. Molton, R. Jazzar, G.
5
This article is protected by copyright. All rights reserved.