C O M M U N I C A T I O N S
and structural diversity; (3) formed via novel reaction patterns.
Further investigation into the reaction mechanism, scope, and
applications is in progress.
Acknowledgment. This work was supported by the National
Natural Science Foundation of China and the Major State Basic
Research Development Program (Grant 2006CB806105). The
Cheung Kong Scholars Programme, Qiu Shi Science & Technolo-
gies Foundation, Dow Corning Corporation, and BASF are grate-
fully acknowledged.
Supporting Information Available: Experimental details, copies
1
of H and 13C NMR spectra for all isolated compounds and crystal-
lographic data for 5a. This material is available free of charge via the
References
(1) For recent reviews on the synthesis, chemistry, and property of siloles:
(a) Yamaguchi, S.; Xu, C.; Okamoto, T. Pure Appl. Chem. 2006, 78, 721-
730. (b) Yamaguchi, S.; Xu, C. J. Synth. Org. Chem., Jpn. 2005, 63,
1115-1123. (c) Yamaguchi, S.; Tamao, K. J. Organomet. Chem. 2002,
653, 223-228. (d) Hissler, M.; Dyer, P. W.; Reau, R. Coord. Chem. ReV.
2003, 244, 1-44. (e) Yamaguchi, S.; Tamao, K. Silicon-containing
Polymers: The Science and Technology of their Synthesis and Applica-
tions; Jones, R. G., Ando, W., Chojnowski, J., Eds.; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 2000; pp 461-498.
(2) (a) Tamao, K.; Yamaguchi, S.; Shiro, M. J. Am. Chem. Soc. 1994, 116,
11715-11722. (b) Yamaguchi, S.; Jin, R.; Itami, Y.; Goto, T.; Tamao,
K. J. Am. Chem. Soc. 1999, 121, 10420-10421. (c) Yamaguchi, S.; Endo,
T.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Tamao, K. Chem.sEur. J.
2000, 6, 1683-1692. (d) Yamaguchi, S.; Goto, T.; Tamao, K. Angew.
Chem., Int. Ed. 2000, 39, 1695-1697. (e) Yamaguchi, S.; Xu, C.; Tamao,
K. J. Am. Chem. Soc. 2003, 125, 13662-13663. (f) Yamaguchi, S.; Tamao,
K. Chem. Lett. 2005, 34, 2-7. (g) Xu, C.; Wakayama, A.; Yamaguchi,
S. J. Am. Chem. Soc. 2005, 127, 1638-1639.
Figure 2. One-pot synthesis of 5 via 2a and (a) SiMe3Cl; (b) SiPh3Cl; (c)
MeI; (d) CO2; (e) cyclohexanone; (f) 4′-tolylCOCl; (g) 4′-biphenylCHO.
Scheme 2
(3) (a) Geramita, K.; McBee, J.; Shen, Y.; Radu, N.; Tilley, T. D. Chem.
Mater. 2006, 18, 3261-3269. (b) Hudrlik, P. F.; Dai, D. H.; Hudrlik, A.
M. J. Organomet. Chem. 2006, 691, 1257-1264. (c) Zhan, X. W.; Risko,
C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn, A.; Bredas, J. L.;
Marder, S. R. J. Am. Chem. Soc. 2005, 127, 9021-9029.
(4) Representative methods for 1,4-dihalo-1,3-diene derivatives, see: (a)
Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 27,
2829-2832. (b) Buchwald, S. L.; Nielsen, R. B. J. Am. Chem. Soc. 1989,
111, 2870-2874. (c) Xi, C.; Huo, S.; Afifi, T. H.; Hara, R.; Takahashi,
T. Tetrahedron Lett. 1997, 38, 4099-4102. (d) Yamaguchi, S.; Jin, R.;
Tamao, K.; Sato, F. J. Org. Chem. 1998, 63, 10060-10062. (e) Xi, Z.;
Song, Z.; Liu, G.; Liu, X.; Takahashi, T. J. Org. Chem. 2006, 71, 3154-
3158.
(5) Recent applications of 1,4-dilithio-1,3-dienes in organic synthesis, see:
(a) Xi, Z.; Song, Q.; Chen, J.; Guan, H.; Li, P. Angew. Chem., Int. Ed.
Engl. 2001, 40, 1913-1916. (b) Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am.
Chem. Soc. 2001, 123, 10419-10420. (c) Fang, H.; Li, G.; Mao, G.; Xi,
Z. Chem.sEur. J. 2004, 10, 3444-3450. (d) Wang, C.; Yuan, J.; Li, G.;
Wang, Z.; Zhang, S.; Xi, Z. J. Am. Chem. Soc. 2006, 128, 4564-4565.
(6) (a) Murakami, M.; Miyamoto, Y.; Hasegawa, M.; Usui, I.; Matsuda, T.
Pure Appl. Chem. 2006, 78, 415-423 and references therein. (b)
Murakami, M.; Usui, I.; Hasegawa, M.; Matsuda, M. J. Am. Chem. Soc.
2005, 127, 1366-1367.
observed, which is in sharp contrast to some previous results.11
For example, without HMPA, the intramolecular anionic attack of
9 gave 10 in 88% yield.11a In addition, no formation of 8 or related
isomers was detected under various experimental conditions in this
work.9,10 Thus, although path b seems more likely, the mechanism
via path a cannot be ruled out.
(7) (a) Kos, A. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1980, 102, 7928-
7929. (b) Ashe, A. J., III; Lohr, L. L.; Al-Tawee, S. M. Organometallics
1991, 10, 2424-2431.
Indeed, the in situ generated MeLi was trapped by an aldehyde
forming the alcohol 11 in 83% isolated yield (eq 2).11a
(8) (a) Schubert, U.; Neugebauer, W.; Schleyer, P. v. R. J. Chem. Soc., Chem.
Commun. 1982, 1184. (b) Bauer, W.; Feigel, M.; Muller, G.; Schleyer, P.
v. R. J. Am. Chem. Soc. 1988, 110, 6033. (c) Ashe, A. J., III; Kampf, J.
W.; Savla, P. M. Organometallics 1993, 12, 3350-3353. (d) Ashe, A. J.,
III; Savla, P. M. J. Organomet. Chem. 1993, 461, 53. (e) Pauer, F.; Power,
P. P. J. Organomet. Chem. 1994, 474, 27-30.
(9) Fleming, I.; Barbero, A.; Walter, D. Chem. ReV. 1997, 97, 2063-2192.
(10) (a) Zweifel, G.; Lewis, W. J. Org. Chem. 1978, 43, 2739-2744. (b)
Zweifel, G.; Murry, R. E.; On, H. P. J. Org. Chem. 1981, 46, 1292-
1295. (c) Knorr, R.; von Roman, T. Angew. Chem., Int. Ed. 1984, 23,
366-368. (d) Negishi, E.; Takahashi, T. J. Am. Chem. Soc. 1986, 108,
3402-3408.
(11) For recent examples on lithium-mediated loss of organic groups from
silicon, see: (a) Wang, Z.; Fang, H.; Xi, Z. Tetrahedron Lett. 2005, 46,
499-501. (b) Hudrlik, P. F.; Dai, D.; Hudrlik, A. M. J. Organomet. Chem.
2006, 691, 1257-1264.
In conclusion, we report in this paper a new type of lithio siloles,
which can be complementary to those Tamao-Yamaguchi re-
agents.1,2 These new lithio siloles have the following features: (1)
readily available; (2) more general in terms of substitution patterns
JA070404S
9
J. AM. CHEM. SOC. VOL. 129, NO. 11, 2007 3095