A R T I C L E S
Kelley et al.
self-assembled array. In this hierarchical approach, the symmetry
of the molecular building blocks not only controls the geometry
of the assemblies formed from these subunits but also the
directionality of photoinduced electron transfer.
nearly degenerate and have electron density distributions that
differ greatly.56-58 The a1u orbital has significant electron density
at the â-carbons of the porphyrin with little density at the meso
positions, while the opposite is true for the a2u orbital. The
energetic ordering of these two orbitals in the metalloporphyrin
depends on the nature and the position of the substituents
attached to the porphyrin.58 Substituting electron-donating
groups, e.g., phenyl rings or alkyl chains, at the meso positions
(5,10,15,20) of the porphyrin raises the energy of the a2u orbital
above that of the a1u orbital, making the a2u orbital the HOMO,
while substitution of the â-positions with similar electron-
releasing groups results in the a1u orbital being the HOMO.58,59
Generally, increased electron density at particular peripheral
carbon atoms of the porphyrin results in stronger electronic
coupling to molecules attached to those positions, and conse-
quently in faster electron-transfer rates.49 For example, Hayes
et al.53 showed that a zinc porphyrin having a pyromellitimide
electron acceptor attached to a meso-phenyl group has a charge
recombination rate that is 3 times faster than that of a porphyrin
in which the acceptor is attached to a â-phenyl group. The
intense, complementary electronic spectra of Z3PN and PDI
result in absorption of a large portion of the solar spectrum
between 400 and 650 nm. It has already been shown that
photoinduced electron transfer occurs rapidly and efficiently
from 1*Z3PN to PDI derivatives.60,61 Each of these examples is
consistent with dominant through-bond, superexchange-mediated
electron transfer.62-66
Perylene-3,4:9,10-bis(dicarboximide) (PDI) chromophores are
excellent building blocks for covalent and noncovalent photo-
functional arrays.10-15,23,27,28,32-41 PDI has two distinct sites to
which electron donors and/or acceptors can be easily attached:
the nitrogen atoms of the imides and the 1,6,7,12-carbon atoms
at its long edges. Electronic structure calculations show that
both the HOMO and LUMO of PDI have nodal planes that
bisect the molecule along the N-N axis, so that the π-electron
density in these orbitals is much greater at the 1,6,7,12-carbon
atoms than at the imide nitrogen atoms.42 Rates of electron
transfer kDA, are given by kDA V2DA(FCWD), where VDA is
the electronic coupling matrix element and FCWD is the
Franck-Condon weighted density of states.43-45 Through-bond
Dexter-type energy transfer,46 when viewed formally as two
electron transfers, can also be described using a similar
expression involving the product of the electronic coupling
matrix elements for each electron transfer.47,48 Since VDA
depends strongly on orbital overlap between the frontier
molecular orbital of the donor with that of the acceptor,49 rates
of electron transfer and Dexter-type energy transfer depend
strongly on the electron density distributions within these
orbitals.50,51 Thus, attaching identical electron donors to sites
on PDI having orbital coefficients that differ greatly should in
principle result in large differences in electron-transfer rates,
making it possible to tailor the rates of individual electron-
transfer pathways in a complex donor-acceptor array.
Coordination bond formation using metal centers and poly-
dentate ligands is an attractive strategy for building self-
assembled structures in which the geometries of the covalent
building blocks dictate the structure of the assemblies. Increasing
the number of coordination bonding sites within the structure
enhances allosteric effects and increases control over the
assembly geometry. Multiporphyrin arrays, in which coordina-
tion bonds are formed between bidentate ligands and the
porphyrin metal centers, represent an important controllable
assembly motif.67-77 There are many examples of multipor-
It is well-known that the rates of both Dexter-type energy
transfer and electron transfer to or from metalloporphyrins
depend on which position of the macrocycle the donor or
acceptor is attached.50,52-55 The two highest occupied molecular
orbitals (HOMO and HOMO-1) within metalloporphyrins are
(32) Wu¨rthner, F. Chem. Commun. 2004, 1564-1579.
(33) Xiao, S.; El-Khouly, M. E.; Li, Y.; Gan, Z.; Liu, H.; Jiang, L.; Araki, Y.;
Ito, O.; Zhu, D. J. Phys. Chem. B 2005, 109, 3658-3667.
(34) Liu, Y.; Wang, N.; Li, Y.; Liu, H.; Li, Y.; Xiao, J.; Xu, X.; Huang, C.;
Cui, S.; Zhu, D. Macromolecules 2005, 38, 4880-4887.
(35) He, X.; Liu, H.; Li, Y.; Liu, Y.; Lu, F.; Li, Y.; Zhu, D. Macromol. Chem.
Phys. 2005, 206, 2199-2205.
(54) Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.;
Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1997, 119, 11191-11201.
(55) Osuka, A.; Marumo, S.; Maruyama, K.; Mataga, N.; Tanaka, Y.; Taniguchi,
S.; Okada, T.; Yamazaki, I.; Yoshinobu, N. Bull. Chem. Soc. Jpn. 1995,
68, 262-276.
(36) You, C.-C.; Wu¨rthner, F. J. Am. Chem. Soc. 2003, 125, 9716-9725.
(37) You, C.-C.; Wu¨rthner, F. Org. Lett. 2004, 6, 2401-2404.
(38) Prodi, A.; Chiorboli, C.; Scandola, F.; Iengo, E.; Alessio, E.; Dobrawa,
R.; Wu¨rthner, F. J. Am. Chem. Soc. 2005, 127, 1454-1462.
(39) You, C.-C.; Dobrawa, R.; Saha-Moeller, C. R.; Wu¨rthner, F. Top. Curr.
Chem. 2005, 258, 39-82.
(56) Gouterman, M. Porphyrins 1978, 3, 1-165.
(57) Weiss, C.; Kobayashi, H.; Gouterman, M. J. Mol. Spectrosc. 1965, 16,
415-450.
(58) Fajer, J.; Borg, D. C.; Forman, A.; Dolphin, D.; Felton, R. H. J. Am. Chem.
Soc. 1970, 92, 3451-3459.
(40) Beckers, E. H. A.; Meskers, S. C. J.; Schenning, A. P. H. J.; Chen, Z.;
Wu¨rthner, F.; Marsal, P.; Beljonne, D.; Cornil, J.; Janssen, R. A. J. J. Am.
Chem. Soc. 2006, 128, 649-657.
(59) Atamian, M.; Wagner, R. W.; Lindsey, J. S.; Bocian, D. F. Inorg. Chem.
1988, 27, 1510-1512.
(60) Gosztola, D.; Niemczyk, M. P.; Wasielewski, M. R. J. Am. Chem. Soc.
1998, 120, 5118-5119.
(41) An, Z.; Yu, J.; Jones, S. C.; Barlow, S.; Yoo, S.; Domercq, B.; Prins, P.;
Siebbeles, L. D. A.; Kippelen, B.; Marder, S. R. AdV. Mater. (Weinheim)
2005, 17, 2580-2583.
(61) Hayes, R. T.; Wasielewski, M. R.; Gosztola, D. J. Am. Chem. Soc. 2000,
122, 5563-5567.
(42) Burquel, A.; Lemaur, V.; Beljonne, D.; Lazzaroni, R.; Cornil, J. J. Phys.
Chem. A 2006, 110, 3447-3453.
(62) Anderson, P. W. Phys. ReV. 1950, 79, 350-356.
(63) Anderson, P. W. Phys. ReV. 1959, 115, 2-13.
(64) McConnell, H. M. J. Chem. Phys. 1961, 35, 508-515.
(65) Marcus, R. A. Chem. Phys. Lett. 1987, 133, 471.
(66) Ogrodnik, A.; Michel-Beyerle, M. E. Z. Naturforsch. 1989, 44a, 763-
764.
(43) Hopfield, J. J. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3640-3644.
(44) Jortner, J. J. Chem. Phys. 1976, 64, 4860-4867.
(45) Marcus, R. A. J. Chem. Phys. 1984, 81, 4494-4500.
(46) Dexter, D. L. J. Chem. Phys. 1953, 21, 836-850.
(47) Closs, G. L.; Johnson, M. D.; Miller, J. R.; Piotrowiak, P. J. Am. Chem.
Soc. 1989, 111, 3751-3753.
(67) Tabushi, I.; Kugimiya, S.; Kinnaird, M. G.; Sasaki, T. J. Am. Chem. Soc.
1985, 107, 4192-4199.
(48) Closs, G. L.; Piotrowiak, P.; MacInnis, J. M.; Fleming, G. R. J. Am. Chem.
Soc. 1988, 110, 2652-2653.
(68) Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. J. Chem. Soc., Chem.
Commun. 1988, 694-696.
(49) Plato, M.; Mo¨bius, K.; Michel-Beyerle, M. E.; Bixon, M.; Jortner, J. J.
Am. Chem. Soc. 1988, 110, 7279-7285.
(69) Hunter, C. A.; Leighton, P.; Sanders, J. K. M. J. Chem. Soc., Perkin Trans.
1 1989, 547-552.
(50) Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem. Res. 2002, 35, 57-
(70) Camara-Campos, A.; Hunter, C. A.; Tomas, S. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 3034-3038.
69.
(51) Tsai, H.; Simpson, M. C. Chem. Phys. Lett. 2002, 353, 111-118.
(52) Redmore, N. P.; Rubtsov, I. V.; Therien, M. J. J. Am. Chem. Soc. 2003,
125, 8769-8778.
(71) Ballester, P.; Oliva, A. I.; Costa, A.; Deya, P. M.; Frontera, A.; Gomila,
R. M.; Hunter, C. A. J. Am. Chem. Soc. 2006, 128, 5560-5569.
(72) Ballester, P.; Costa, A.; Deya, P. M.; Frontera, A.; Gomila, R. M.; Oliva,
A. I.; Sanders, J. K. M.; Hunter, C. A. J. Org. Chem. 2005, 70, 6616-
6622.
(53) Hayes, R. T.; Wasielewski, M. R. J. Phys. Chem A 2004, 108, 2375-
2381.
9
3174 J. AM. CHEM. SOC. VOL. 129, NO. 11, 2007