Letters
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 3 379
(6) Vives, E.; Charneau, P.; van Rietschoten, J.; Rochat, H.; Bahraoui, E.
Effects of the Tat basic domain on human immunodeficiency virus
type 1 transactivation, using chemically synthesized Tat protein and
Tat peptides. J. Virol. 1994, 68, 3343–3353.
(7) Vives, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic
domain rapidly translocates through the plasma membrane and
accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010–
16017.
(18) (a) Kruijtzer, J. A. W.; Hofmemeyer, L. J. F.; Wigger, H.; Versluis,
C.; Liskamp, R. M. J. Solid-phase syntheses of peptoids using Fmoc-
protected N-substituted glycines: The synthesis of (retro)peptoids of
leu-enkephalin and substance P. Chem.sEur. J. 1998, 4, 1570–1580.
(b) Kruijtzer, J. A. W.; Nijenhuis, W. A. J.; Wanders, N.; Willem,
H.; Liskamp, R. M. J.; Adan, R. A. Peptoid-peptide hybrids as potent
novel melanocortin receptor ligands. J. Med. Chem. 2005, 48, 4224–
4230.
(8) Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A. The third
helix of the Antennapedia homeodomain translocates through biologi-
cal membranes. J. Biol. Chem. 1994, 269, 10444–10450.
(9) Elliott, G.; Ohare, P. Intercellular trafficking and protein delivery by
a herpesvirus structural protein. Cell 1997, 88, 223–233.
(10) Lindgren, M.; Hallbrink, M.; Prochiantz, A.; Langel, U. Cell-
penetrating peptides. Trends Pharmacol. Sci. 2000, 21, 99–103.
(11) Jeang, K. T.; Xiao, H.; Rich, E. A. Multifaceted activities of the HIV-1
transactivator of transcription, Tat. J. Biol. Chem. 1999, 274, 28837–
28840.
(12) Nagahara, H.; Vocero-Akbani, A. M.; Snyder, E. L.; Ho, A.; Latham,
D. G.; Lissy, N. A.; Becker-Hapak, M.; Ezhevsky, S. A.; Dowdy,
S. F. Transduction of full-length TAT fusion proteins into mammalian
cells: TAT-p27 Kip1 induces cell migration. Nat. Med. 1998, 4, 1449–
1452.
(13) Rueping, M.; Mahajan, Y. R.; Jaun, B.; Seebach, D. Design, synthesis
and structural investigations of a ꢀ-peptide forming a 314-helix
stabilized by electrostatic interactions. Chem.sEur. J. 2004, 10, 1607–
1615.
(14) (a) Figliozzi, G. M.; Goldsmith, R.; Ng, S.; Banville, S. C.; Zucker-
mann, R. N. Synthesis of N-substituted glycine peptoid libraries.
Methods Enzymol. 1996, 267, 437–447. (b) Miller, S. M.; Simon, R. J.;
Ng, S.; Zuckermann, R. N.; Kerr, J. M.; Moos, W. H. Comparison of
the proteolytic susceptibilities of homologous L-amino acid, D-amino
acid, and N-substituted glycine peptide and peptoid oligomers. Drug
DeV. Res. 1995, 35, 20–32. (c) Simon, R. J.; Kania, R. S.; Zuckermann,
R. N.; Huebner, V. D.; Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.;
Rosenberg, S. Peptoids: A modular approach to drug discovery. Proc.
Natl. Acad. Sci. U.S.A. 1992, 89, 9367–9371.
(19) Yoo, B.; Kirshenbaum, K. Protease-mediated ligation of abiotic
oligomers. J. Am. Chem. Soc. 2005, 127, 17132–17133.
(20) Seurynck-Servoss, S. L.; Dohm, M. T.; Barron, A. E. Effects of
including an N-terminal insertion region and arginine-mimetic side
chains in helical peptoid analogues of lung surfactant protein B.
Biochemistry 2006, 45, 11809–11818.
(21) Schröder, T.; Schmitz, K.; Niemeier, N.; Balaban, T. S.; Krug, H. F.;
Schepers, U.; Bräse, S. Solid-phase synthesis, bioconjugation, and
toxicology of novel cationic oligopeptoids for cellular drug delivery.
Bioconjugate Chem. 2007, 18, 342–354.
(22) Mitchell, D. J.; Kim, D. T.; Steinman, L.; Fathman, C. G.; Rothbard,
J. B. Polyarginine enters cells more efficiently than other polycationic
homopolymers. J. Pept. Res. 2000, 56, 318–325.
(23) Zaro, J. L.; Shen, W.-C. Cytosolic delivery of a p16-peptide oligoargi-
nine conjugate for inhibiting proliferation of MCF7 cells. J. Controlled
Release 2005, 108, 409–417.
(24) Sakai, N.; Matile, S. Anion-mediated transfer of polyarginine across
liquid and bilayer membranes. J. Am. Chem. Soc. 2003, 125, 14348–
14356.
(25) Rothbard, J. B.; Jessop, T. C.; Lewis, R. S.; Murray, B. A.; Wender,
P. A. Role of membrane potential and hydrogen bonding in the
mechanism of translocation of guanidinium-rich peptides into cells.
J. Am. Chem. Soc. 2004, 126, 9506–9507.
(26) Lieber, M.; Smith, B.; Nelson-Rees, A. W.; Todaro, G. A continuous
tumor-cell line from a human lung carcinoma with properties of type
II alveolar epithelial cells. Int. J. Cancer 1976, 17, 62–70.
(27) Takahashi, K.; Sawasaki, Y.; Hata, J.; Mukai, K.; Goto, T. Spontaneous
transformation and immortalization of human endothelial cells. In Vitro
Cell. DeV. Biol. 1990, 26, 265–274.
(28) Berridge, M. V.; Herst, P. M.; Tan, A. S. Tetrazolium dyes as tools
in cell biology: New insights into their cellular reduction. Biotechnol.
Annu. ReV. 2005, 11, 127–152.
(15) (a) Peretto, I.; Sanchez-Martin, R. M.; Wang, X. H.; Ellard, J.; Mittoo,
S.; Bradley, M. Cell penetrable peptoid carrier vehicles: synthesis and
evaluation. Chem. Commun. 2003, 2312–2313. (b) Fara, M. A.; Diaz-
Mochon, J. J.; Bradley, M. Microwave-assisted coupling with DIC/
HOBt for the synthesis of difficult peptoids and fluorescently labeled
peptides-a gentle heat goes a long way. Tetrahedron Lett. 2006, 47,
1011–1014.
(16) Holder, J. R.; Bauzo, R. M.; Xiang, Z.; Scott, J.; Haskell-Luevano,
C. Design and pharmacology of peptoids and peptide-peptoid hybrids
based on the melanocortin agonists core tetrapeptide sequence. Bioorg.
Med. Chem. Lett. 2003, 13, 4505–4509.
(29) Berridge, M. V.; Tan, A. S. Characterization of the cellular reduction
of 3-(4,4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT):
Subcellular localization, substrate dependence, and involvement of
mitochondrial electron transport in MTT reduction. Arch. Biochem.
Biophys. 1993, 303, 474–482.
(30) Wörle-Knirsch, J. M.; Pulskamp, K.; Krug, H. F. Oops they did it
again! Carbon nanotubes hoax scientists in viability assays. Nano Lett.
2006, 6, 1261–1268.
(17) Uno, T.; Beausoleil, E.; Goldsmith, R. A.; Levine, B. H.; Zuckermann,
R. N. New submonomers for poly N-substituted glycines (peptoids).
Tetrahedron Lett. 1999, 40, 1475–1478.
JM070603M