2384
M. M. Changalov, D. D. Petkov / Tetrahedron Letters 48 (2007) 2381–2384
6. Maden, B. E.; Monro, R. E. Eur. J. Biochem. 1968, 6, 309–
316.
7. Moore, P. B.; Steitz, T. A. Ann. Rev. Biochem. 2003, 72,
813–850.
and the reaction path of peptide bond formation which
will not be altered greatly by the specificities of the
EtOH and the a-NH2 group as O and N nucleophiles.
8. Nierhaus, K. H.; Schulze, H.; Cooperman, B. S. Biochem.
Int. 1980, 1, 185–192.
This study shows that the main role of the deprotonated
20-OH group in our model transesterification reaction is
to enhance the nucleophilic power of the attacking
nucleophile. The Hammett correlations and kinetic iso-
tope effects support a stepwise AN + DN reaction mech-
anism in which attack of the nucleophile is rate-
determining. Arguments show that a similar AN + DN
mechanism (Scheme 1 A) probably operates for the pep-
tide bond formation.
9. Katunin, V. I.; Muth, G. W.; Strobel, S. A.; Wintermeyer,
W.; Rodnina, M. V. Mol. Cell 2002, 10, 339–346.
10. Weinger, J. S.; Parnell, K. M.; Dorner, S.; Green, R.;
Strobel, S. A. Nat. Struct. Mol. Biol. 2004, 11, 1101–1106.
11. Sievers, A.; Beringer, M.; Rodnina, M. V.; Wolfenden, R.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 7897–7901.
12. (a) Changalov, M. M.; Ivanova, G. D.; Rangelov, M. A.;
Acharya, P.; Acharya, S.; Minakawa, N.; Foldesi, A.;
Stoineva, I. B.; Yomtova, V. M.; Russev, C. D.; Matsuda,
A.; Chattopadhyaya, J.; Petkov, D. D. ChemBioChem
2005, 6, 992–996; (b) Trobo, S.; Aqvist, J. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 12395–12400.
Acknowledgements
13. Bieling, P.; Beringer, M.; Adio, S.; Rodnina, M. Nature
Struct. Mol. Biol. 2006, 13, 423–428.
14. Scolnick, E.; Milman, G.; Rosman, M.; Caskey, T. Nature
1970, 225, 152–154.
15. McClelland, A. R.; Santry, J. L. Acc. Chem. Res. 1983, 16,
394–399.
We thank the National Research Fund of Bulgaria
for financial assistance (Grant K-901) and Professor
I. Pojarlieff for helpful suggestions and critical reading
of the manuscript.
16. Capon, B.; Ghosh, A. K.; Grieve, A. M. D. Acc. Chem.
Res. 1981, 14, 306.
Supplementary data
17. (a) Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem.
Soc. 1987, 109, 6362; (b) Ba-Saif, S.; Luthra, A. K.;
Williams, A. J. Am. Chem. Soc. 1989, 111, 2647; (c) Ba-
Saif, S.; Colthurst, M.; Waring, M. A.; Williams, A. J.
Chem. Soc., Perkin Trans. 2 1991, 1901; (d) Williams, A.
Acc. Chem. Res. 1989, 22, 387; (e) Colthurst, M. J.; Nanni,
M.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1996, 2285.
18. (a) Hengge, A. C. J. Am. Chem. Soc. 1992, 114, 6575; (b)
Hengge, A. C.; Hess, R. A. J. Am. Chem. Soc. 1992, 114,
11256; (c) Cleland, W. W.; Hengge, A. C. FASEB J. 1995,
9, 1585.
Experimental procedures and characterization of the
compounds. Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
References and notes
19. Williams, A.; Douglas, K. T. Chem. Rev. 1975, 75, 627.
20. Bender, M. L. Chem. Rev. 1960, 60, 53; Johnson, S. L.
Adv. Phys. Org. Chem. 1967, 5, 237.
1. Barta, A.; Halama, I. In Ribosomal RNA and Group I
introns; Green, R., Schroeder, R., Eds.; R.G. Landes
Company: Austin, TX, 1996; pp 35–54.
21. Griffin, B. E.; Jarman, M.; Reese, C. B.; Sultston, J. E.;
Trentham, D. R. Biochemistry 1966, 5, 3638–3649.
22. Anderson, V. E.; Ruszczycky, M. W.; Harris, M. E. Chem.
Rev. 2006, 106, 3236–3251.
23. Jencks, W. P. J. Am. Chem. Soc. 1972, 94, 4731.
24. Wolfenden, R. Biochemistry 1963, 338, 1090–1092.
25. Leffek, K. T.; Pruszynski, P.; Thanapaalasingham, K.
Can. J. Chem. 1989, 67, 590–595.
2. Schmeing, T. M.; Huang, K. S.; Strobel, S. A.; Steitz,
T. A. Nature 2005, 438, 520–524.
3. Schmeing, T. M.; Huang, K. S.; Kitchen, D. E.; Strobel,
S. A.; Steitz, T. A. Mol. Cell 2005, 20, 437–448.
4. Krayevsky, A. A.; Kukhanova, M. K. Prog. Nucleic Acids
Res. Mol. Biol. 1979, 23, 1–51.
5. Lieberman, K. R.; Dahlberg, A. E. Prog. Nucleic Acids
Res. Mol. Biol. 1995, 50, 1–23.