5
22.
23.
24.
Jiang, Z. Y.; Chan, W. H.; Lee, A. W. J. Org. Chem.
2005, 70, 1081-3.
bond is breaking (1.898 Å) leading to the protonated sulfinyl
imine and water (G, +12.5 kcal mol-1). The last step in the
catalytic cycle involves proton transfer from the protonated
sulfinyl imine to the oxygen of another sulfinamide yielding the
product in an overall exothermic process (-2.0 kcal mol-1).
Morales, S.; Guijarro, F. G.; Garcia Ruano, J. L.; Cid, M.
B. J. Amer. Chem. Soc. 2014, 136, 1082-9.
Aggarwal, V. K.; Barbero, N.; McGarrigle, E. M.; Mickle,
G.; Navas, R.; Suárez, J. R.; Unthank, M. G.; Yar, M.
Tetrahedron Letters 2009, 50, 3482-3484.
3. Conclusion
A rapid and convenient method was developed for the synthesis
of tert-butanesulfinyl imines from aldehydes and tert-
butanesulfinamide, catalyzed by HBF4•DEE (10 mol%) in
CH2Cl2 at room temperature in 2 h. Sulfinyl imines obtained from
both aliphatic, differently substituted aromatic and ,-
unsaturated aldehydes were obtained in high isolated yields. A
DFT-investigation suggests that the sulfinamide is protonated by
HBF4•DEE and the addition of sulfinamide occurs via a six-
membered chair-like transition state. The Gibbs free energy of
activation for this process is 20.5 kcal mol-1 and the overall
reaction is exothermic with 2.0 kcal mol-1.
Acknowledgments
B. B. and P.D. thanks KTH – Royal Institute of Technology
for financial support and the National Supercomputer Center
(NSC) in Linköping for computational resources.
References and notes
1.
2.
3.
4.
Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res.
2002, 35, 984-995.
Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev.
2010, 110, 3600-3740.
Liu, G. C.; Cogan, D. A.; Ellman, J. A. J. Amer. Chem.
Soc. 1997, 119, 9913-9914.
Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Izumi, K.; Xu, M.-
H.; Lin, G.-Q. J. Amer. Chem. Soc. 2005, 127, 11956-
11957.
5.
Evans, J. W.; Ellman, J. A. J. Org. Chem. 2003, 68, 9948-
9957.
6.
Barrow, J. C.; Ngo, P. L.; Pellicore, J. M.; Selnick, H. G.;
Nantermet, P. G. Tetrahedron Lett. 2001, 42, 2051-2054.
Kochi, T.; Tang, T. P.; Ellman, J. A. J. Amer. Chem. Soc.
2003, 125, 11276-11282.
7.
8.
Kochi, T.; Tang, T. P.; Ellman, J. A. J. Amer. Chem. Soc.
2002, 124, 6518-6519.
9.
Cogan, D. A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55,
8883-8904.
10.
11.
Cogan, D. A.; Ellman, J. A. J. Amer. Chem. Soc. 1998,
121, 268-269.
Avenoza, A.; Busto, J. H.; Corzana, F.; Peregrina, J. M.;
Sucunza, D.; Zurbano, M. M. Synthesis 2005, 2005, 575-
578.
12.
13.
Naskar, D.; Roy, A.; Seibel, W. L.; Portlock, D. E.
Tetrahedron Lett. 2003, 44, 8865-8868.
Tang, T. P.; Ellman, J. A. J. Org. Chem. 2002, 67, 7819-
7832.
14.
15.
16.
Tang, T. P.; Ellman, J. A. J. Org. Chem. 1998, 64, 12-13.
Zhao, S.; Andrade, R. B. J. Org. Chem. 2017, 82, 521-531.
Liu, H.; Zhang, X.; Shan, D.; Pitchakuntla, M.; Ma, Y.; Jia,
Y. Org. Lett. 2017, 19, 3323-3326.
17.
18.
Cai, S.-L.; Yuan, B.-H.; Jiang, Y.-X.; Lin, G.-Q.; Sun, X.-
W. Chem. Commun. 2017, 53, 3520-3523.
Kiemele, E. R.; Wathier, M.; Bichler, P.; Love, J. A. Org.
Lett. 2016, 18, 492-495.
19.
20.
Lee, Y.; Silverman, R. B. Org. Lett. 2000, 2, 303-306.
Sanaboina, C.; Jana, S.; Eppakayala, L. Synlett 2014, 25,
1006-1008.
21.
Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman,
J. A. J. Org. Chem. 1999, 64, 1278-1284.