C O M M U N I C A T I O N S
a
could also displace the iodide from the (R)(Ar)PdIVI intermediate
and increase the turnover number as observed.
Table 2. â-Arylation of Aliphatic Acids Using Ph-B(OR)2
In summary, we have observed the first example of Pd-insertion
into sp3 â-C-H bonds in simple aliphatic acids. A promising
protocol for the coupling of sp2 and sp3 C-H bonds in simple
carboxylic acids with organoboron reagents has been established.
The potential of carboxyl-directed C-H activation in developing
C-C bond-forming reactions is also demonstrated by the arylation
of â-C-H bonds in aliphatic acids using ArI. We are currently
optimizing the conditions to improve the yields of these reactions.
Acknowledgment. We thank Brandeis University for financial
support and the Camille and Henry Dreyfus Foundation for a New
Faculty Award. We are also grateful to the Myron Rosenblum
Endowed Fellowship to R.G and the NSF for a REU Fellowship
to S.P.B.
a Conditions: 10 mol % Pd(OAc)2, 1 equiv of 2, 0.5 equiv of benzo-
quinone, 1 equiv of Ag2CO3 and 1.5 equiv of K2HPO4. b Yields of their
methyl esters. Less than 2% diarylated products were observed in 6-10.
Table 3. â-Arylation of Aliphatic Acids Using ArIa
Supporting Information Available: Experimental procedure and
characterization of all new compounds. This material is available free
References
yield
yield
(%)b
entry
product
(%)b entry
product
(1) For reviews see: (a) Diederich, F., Stang, P. J., Eds. Metal-Catalyzed
Cross-Coupling Reactions; Wiley-VCH: New York, 1998. (b) Nicolaou,
K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
(2) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38, 2411. (b)
Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413. (c)
Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 1473. (d)
Netherton, M. R.; Dai, C.; Neuschu¨tz, K.; Fu, G. C. J. Am. Chem. Soc.
2001, 123, 10099. (e) Barder, T. E.; Walker, S. D.; Martinelli, J. R.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685.
(3) (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002,
124, 11250. (b) Gooâen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313,
662.
(4) (a) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 78. (b) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc., 2006, 128, 12634.
1
R ) Me, Ar ) Ph
6a/6b, 5:2
70
72
5
6
7
8
R ) rBu,, Ar ) Ph
62
45
42c
8a/8b, 4:1
2
3
4
R ) Et, Ar ) Ph
R ) (CH2)3OBn, Ar ) Ph
9a/9b, 5:1
R ) (CH2)2CO2Me, Ar ) Ph
10a/10b, 5:1
R ) (CH2)2CO2Me, Ar ) p-MePh 43
10c/10d, 5:1
7a/7b, 4:1
R ) rPr, Ar ) pMePh 60
12a/12b, 3:1
R ) nPr, Ar ) p-BrPh 63
12c/12d, 3:1
a Conditions: 10 mol % Pd(OAc)2, 2 equiv of aryl iodide, 2 equiv of
Ag2CO3, 1 equiv of K2HPO4, and 2 equiv of NaOAc. b Yields of their
methyl esters. c 10b was not isolated. The yield is based on 10a.
(5) For a Rh-catalyzed ortho arylation of 2-phenylpyridine using tetraaryltin
see: Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun. 1998, 2439.
(6) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b)
Brown, J. M. Chem. Soc. ReV. 1993, 22, 25. (c) Halpern, J. Science 1982,
217, 401.
predominantly the monoarylated product 6a in 30% isolated yield.
The use of Ag2O or AgOAc in place of Ag2CO3 as an oxidant
afforded less than 5% of 6a. The presence of Na2CO3 results in a
complete loss of reactivity with aliphatic acids. However, the
potassium carboxylate of 6 generated in situ using K2HPO4 affords
6a in 38% isolated yield (Table 2, entry 1).
While the catalytic turnover remains to be improved, the observed
mono-selectivity is a highly desirable advantage. Benzylethers and
esters were also tolerated (Table 2, entries 4-5), thus making this
protocol potentially applicable to organic synthesis. The preferential
arylation of the cyclopropyl C-H bond is worth noting since
examples of Pd insertion into methylene C-H bonds are still rare
(entry 6).15
Importantly, this coupling reaction provides the first example
for carboxyl-directed Pd-insertion into sp3 â-C-H bonds in simple
aliphatic acids. To demonstrate the generality of this C-H cleavage
reactivity in C-C bond forming reactions, we carried out arylation
reactions using ArI as the arylating reagents.15-17 We found that
alteration of our coupling protocol by omitting the benzoquinone
and using PhI as the coupling partner led to mono- and diarylation
of aliphatic acid 6 in 40% combined yield (6a/6b ) 5:2). We further
discovered that the use of 2 equiv of NaOAc as an additive
substantially increases the combined yield of 6a and 6b to 70%
(Table 3).18
This arylation reaction most likely involves a COOH directed
Pd insertion into C-H bonds and subsequent oxidation of the RPdII-
complex to (R)(Ar)PdIVI intermediate by ArI. The formation of
diarylated products (Table 3) is consistent with the PdII/PdIV
pathway in which the PdII, unlike the Pd0 in the cross-coupling
protocol, remains bound to the carboxylate and results in further
arylation. Ag2CO3 is mainly responsible for the catalytic turnover
by converting PdI2 into the reactive PdII species.16a The excess AcO-
(7) (a) For a remarkable Ru-catalyzed ortho arylation of acetophenone using
a phenylboronate see: Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai,
S. J. Am. Chem. Soc. 2003, 125, 1698. (b) For an example of Rh-catalyzed
alkenylation of aryl C-H bonds directed by imine see: Thalji, R. K.;
Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2004, 126, 7192. (c)
For
a
Pd-catalyzed arylation of sp3 C-H bonds in 2,4,6-tri-tert-
butylbromobenzene with PhB(OH)2 see: Barder, T. E.; Walker, S. D.;
Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685. (d)
For a Pd-catalyzed arylation of vinylic C-H bonds with PhB(OH)2 see:
Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076.
(8) (a) Kao, L.-C.; Sen, A. J. Chem. Soc., Chem. Commun. 1991, 1242. (b)
Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2001, 123,
8149. (c) Lee, J. M.; Chang, S. Tetrahedron Lett. 2006, 47, 1375.
(9) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem.
1998, 63, 5211.
(10) For arylation of sp3 C-H bonds using an amide-pyridine directing group
and ArI as the arylating reagent see: Zaitsev, V. G.; Shabashov, D.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
(11) For arylation of aryl and benzylic C-H bonds using [Ph2I]BF4 or [Ph2I]-
PF6 see: (a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J.
Am. Chem. Soc. 2005, 127, 7330. (b) Daugulis, O.; Zaitsev, V. G. Angew.
Chem., Int. Ed. 2005, 44, 4046.
(12) (a) Hennings, D. D.; Iwasa, S.; Rawal, V. H. J. Org. Chem. 1997, 62, 2.
(b) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem.,
Int. Ed. 1997, 36, 1740.
(13) Ag2CO3 releases Ag+ and CO32- slowly during the reaction which appears
to be important for the catalysis.
(14) Hermans, S.; Wenkin, M.; Devillers, M. J. Mol. Catal. A: Chem. 1998,
136, 59.
(15) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391.
(16) For examples of Pd-catalyzed methylation or arylation of sp2 C-H bonds
using MeI or ArX see: (a) Tremont, S. J.; Rahman, H. U. J. Am. Chem.
Soc. 1984, 106, 5759. (b) Catellani, M.; Chiusoli, G. P. J. Organomet.
Chem. 1985, 286, C13. (c) Catellani, M.; Frignani, F.; Rangoni, A. Angew.
Chem., Int. Ed. 1997, 36, 119. (d) Campo, M. A.; Huang, Q.; Yao, T.;
Tian, Q.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 11506. (e) Bressy,
C.; Alberico, D.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 13148.
(17) For arylation of sp3 C-H bonds in 1-tert-butyl-2-iodobenzene see: Dyker,
G. Angew. Chem., Int. Ed. 1992, 31, 1023.
(18) The arylation of toluic acid 1 under the same conditions gives the ortho
arylated product in 95% yield.
JA0701614
9
J. AM. CHEM. SOC. VOL. 129, NO. 12, 2007 3511