P. M. Sivakumar et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1695–1700
1699
S.; Brennan, P. J. Antimicrob. Agents Chemother. 1995, 39,
2484; (c) Telenti, A.; Philipp, W. J.; Sreevatsan, S.;
Bernasconi, C.; Stockbauer, K. E.; Wieles, B.; Musser, J.
M., ; Jacobs, W. R., Jr. Nat. Med. 1997, 3, 567; (d)
Sreevatsan, S.; Pan, X.; Zhang, Y.; Kreiswirth, B. N.;
Musser, J. M. Antimicrob. Agents. Chemother. 1997, 41,
636.
molecular surface area (PSAd) is also an ideal surface
descriptor for the differentiation of drugs which in turn
considers three-dimensional shape and flexibility of the
molecules22. Tangallapally et al. observed that hydro-
philic substitutions improved the solubility of cyclic sec-
ondary
amine-substituted
phenyl
and
benzyl
nitrofuranyl amides. The improved solubility improved
the antimycobacterial activity.23
7. Ballell, L.; Field, R. A.; Duncan, K.; Young,
R. J. Antimicrob. Agents. Chemother. 2005, 49,
2153.
CHI-V-1 is the valence modified connectivity index,
which is an indication of the number of bonds in the
molecule. Importance of connectivity indices in virtual
screening of new active agents against M.avium complex
is explained by Garcia et al.24 Shadow indices are a set
of geometric descriptors that characterizes the shape of
the molecule and Shadow-Zlength is the length of the
molecule in the Z dimension. This shows positive contri-
bution in the QSAR equation, which means that
increasing the length of the molecule (also related to
hydrophobicity) increases the antimycobacterial activity
of the compound.
8. Kanokmedhakul, S.; Kanokmedhakul, K.; Phonkerd, N.;
Soytong, K.; Kongsaeree, P.; Suksamrarn, A. Planta Med.
2002, 68, 834.
9. Lin, Y. M.; Zhou, Y.; Flavin, M. T.; Zhou, L. M.; Nie,
W.; Chen, F. C. Bioorg. Med. Chem. 2002, 10, 2795.
10. Rojas, J.; Dominguez, J. N.; Charris, J. E.; Lobo, G.;
Paya, M.; Ferrandiz, M. L. Eur. J. Med. Chem. 2002, 37,
699.
11. Macmicking, J. D.; North, R. J.; Lacourse, R.; Mudgett,
J. S.; Shah, S. K.; Nathan, C. F. Proc. Natl. Acad. Sci.
U.S.A. 1997, 94, 5243.
12. Lin, J.; Rivett, D. E.; Wilshire, J. F. K. Aust. J. Chem.
1977, 30, 629.
13. Riska, P. F.; Su, Y.; Bardarov, S.; Freundlich, L.; Sarkis,
G.; Hatfull, G.; Carriere, G.; Vanaja Kumar; Chan, J.;
Jacobs, W. R., Jr. J. Clin. Microbiol. 1999, 37, 1144, This
procedure is optimized and modified by Dr. Vanaja
Kumar Tuberculosis Research Centre, Chetpet, Chennai,
India. Fifty-microliter bacterial suspension equivalent to
MacFarlands No.2 standard was added to 400 ll of G7H9
with and without the test compound. For each sample,
two drug-free controls and two drug concentrations were
prepared and this set up was incubated for 72 h at 37 °C.
After incubation 50 ll of the high titer Luciferase reporter
phage (phAE129) and 40 ll of 0.1 M CaCl2 were added to
all the vials and this setup was incubated at 37 °C for 4 h.
After incubation 100 ll of the mixture was taken from
each tube into a luminometer cuvette and equal amount of
working D-luciferin (0.3 mM in 0.05 M sodium citrate
buffer, pH 4.5) solution was added. The RLU was
measured after 10 s of integration in the Luminometer
(Monolight 2010). Duplicate readings were recorded for
each sample and the mean was calculated. The percentage
reduction in the RLU was calculated for each test sample
and compared with control. The experiment was repeated
when the mean RLU of the control was less than 1000.
14. Liu, M.; Wilairat, P.; Croft, S. L.; Tan, A. L.; Go, M. L.
Bioorg. Med. Chem. 2003, 11, 2729.
The above short-listed descriptors describe the molecu-
lar size, degree of branching, flexibility, overall shape,
and aqueous solubility and it is known that they in turn
are related to the hydrophlicity–hydrophobicity ratio of
the molecule (logp). Our studies corroborate the previ-
ous research that hydrophobicity25–27 and solubility of
the compound play an important role in the antituber-
cular ctivity.
Acknowledgment
Authors thank Dr. Moni (SAIF, IIT) for providing
spectral analysis.
Supplementary data
Supplementary data associated with this article can be
15. Patole, J.; Shingnapurkar, D.; Padhye, S.; Ratledge, C.
Bioorg. Med. Chem. Lett. 2006, 16, 1514.
References and notes
16. Smith, I. Clin. Microbiol. Rev. 2003, 16, 463.
17. Todeschini, R.; Lasagni, M.; Marengo, E. J. Chemom.
1994, 8, 263.
18. Todeschini, R.; Consonni, V. Handbook of Molecular
Descriptors; Wiley-VCH: Weinheim, 2000.
19. Karelson, M. Molecular Descriptors in QSAR/QSPR;
Wiley Interscience: New York, 2000.
20. Sivakumar, P. M.; Geetha Babu, S. K.; Doble, M. Chem.
Pharm. Bull. 2007, 55, 44.
21. Chen, X. Q.; Cho, S. J.; Li, Y.; Venkatesh, S. J. Pharm.
Sci. 2002, 91, 1838.
22. Palm, K.; Luthman, K.; Ungell, A. L.; Strandlund, G.;
Beigi, F.; Lundahl, P.; Artursson, P. J. Med. Chem. 1998,
41, 5382.
23. Tangallapally, R. P.; Yendapally, R.; Lee, R. E.; Lenaerts,
A. J.; Lee, R. E. J. Med. Chem. 2005, 48, 8261.
24. Garcia, A. G.; Galvez, J.; Julian, J. V.; Domenech, R. G.;
Munoz, C.; Guna, R.; Borras, R. J. Antimicrob. Chemo-
ther. 2004, 53, 65.
1. Blumberg, H. M.; Michael, K.; Leonard, J.; Jasmer, R. M.
J. Am. Med. Assoc. 2005, 293, 2776.
2. Deangelis, C. D.; Flanagin, A. J. Am. Med. Assoc. 2005,
293, 2793.
3. Dye, C.; Watt, C. J.; Bleed, B. M.; Hosseini, S. M.;
Raviglione, M. C. J. Am. Med. Assoc. 2005, 293, 2767.
4. World Health Organization. Global tuberculosis. 2002
Doc. WHO/CDS/TB/2000, 275.
5. (a) Sensi, P.; Grassi, G. In Burger’s Medicinal Chemistry
and Drug Discovery; 5th ed.; John Wiley & Sons. Inc.,
1996; Vol. 2, pp 575–635; (b) Inderlied, C. B.; Kemper, C.
A.; Bermudez, L. E. M. Clin. Microb. Rev. 1993, 6, 266; (c)
Mandell, G. L.; Petri, W. A., Jr. In Goodman and Gilman’s
The Pharmacological Basis of Therapeutics; 9th ed.;
McGraw Hill, 1996, pp 1155–1174.
6. (a) Hoffner, S. E.; Kallenius, G. Eur. J. Clin. Infect. Dis
1988, 7, 188; (b) Mikusova, K.; Slayden, R. A.; Besra, G.