G. Subramanian, W. W. Webb, X.-L. Wu and C. Xu, Science, 1998,
281, 1653; (b) L. Ventelon, M. Blanchard-Desce, L. Moreaux and
J. Mertz, Chem. Commun., 1999, 2055; (c) M. Rumi, J. E. Ehrlich,
A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon,
T. C. Parker, H. Ro¨ckel, S. Thayumanavan, S. R. Marder, D. Beljonne
and J.-L. Bre´das, J. Am. Chem. Soc., 2000, 122, 9500; (d) M. Drobizhev,
A. Karotki, A. Rebane and C. W. Spangler, Opt. Lett., 2001, 26, 1081;
(e) A. Abbotto, L. Beverina, R. Bozio, A. Facchetti, C. Ferrante,
G. A. Pagani, D. Pedron and R. Signorini, Org. Lett., 2002, 4, 1495; (f)
S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne,
M. W. Day, J. L. Bre´das, S. R. Marder and J. W. Perry, J. Phys. Chem.
A., 2002, 106, 11470; (g) S. K. Lee, W. J. Yang, J. J. Choi, C. H. Kim,
S.-J. Jeon and B. R. Cho, Org. Lett., 2005, 7, 323; (h) S.-J. Chung,
M. Rumi, V. Alain, S. Barlow, J. W. Perry and S. R. Marder, J. Am.
Chem. Soc., 2005, 127, 10844; (i) B. Strehmel, S. Amthor, J. Schelter and
C. Lambert, ChemPhysChem, 2005, 6, 893.
3 A 2PA study of two related bis(aminostyryl)thiophenes has previously
been reported (W. Wang, G. M. Xia, G. B. Xu, Z. Q. Liu and Q. Fang,
Chin. Chem. Lett., 2005, 16, 85); however, this study was limited to a
single wavelength of 800 nm. Similar chromophores with dithienothio-
phene bridges have also been studied experimentally and computation-
ally (ref. 2b;O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He,
J. Swiatkiewicz and P. N. Prasad, Chem. Mater., 2000, 12, 284;
by the experimental finding that here very strongly 2PA active
states are found only at higher energies, while the primary
advantage of the more ‘‘conventional’’ D–A–D systems is that
there the lowest 2PA states are already characterized by high cross-
sections.
It is worth noting that the heterocycles in the bridges lead to 1–6
being rather electron rich; 1 and 2 are oxidized at 20.19 and
20.37 V, respectively, vs. FeCp2+/0 and 3–6 all oxidize in the range
+0.05–0.15 V (see ESI{). Excited-state potentials, E1/2+/*, can be
estimated from E1/2+/0 2 E0,0 where E0,0 is the energy of the lowest
singlet excited state (estimated from the onset of 1PA), and
indicate that 1 (22.71 V) and 2 (22.69 V) are superior excited-
state reducing agents to 7 (22.58 V), whereas 3–6 (22.15 to
22.35 V) are somewhat poorer than 7. Since 7 has been shown to
be a sufficiently powerful excited-state reductant to initiate the
radical polymerization of acrylates, it has found application as an
initiator for 2PA microfabrication.10 The similarity of the excited-
state redox potentials to that of 7, along with the enhanced d of the
present compounds at higher energy, suggest the present
compounds, particularly the more electron-rich pyrrole examples,
might be useful 2PA photoinitiators.
˚
C.-K. Wang, P. Macak, Y. Luo and H. Agren, J. Chem. Phys., 2001,
114, 9813).
4 (a) C. W. Dirk, L. T. Cheng and M. G. Kuzyk, Int. J. Quantum Chem.,
1992, 43, 27; (b) R. R. Birge and B. M. Pierce, J. Chem. Phys., 1979, 70,
165.
˚
5 (a) P. Macak, Y. Luo, P. Norman and H. Agren, J. Chem. Phys., 2000,
˚
113, 7055; (b) P. Macak, Y. Luo and H. Agren, Chem. Phys. Lett., 2000,
Finally, we have performed preliminary pump–probe experi-
ments on compound 4; these indicate excited-state absorption at
ca. 670 nm, a wavelength for which there is strong 2PA from the
ground state (corresponding to a Ege9 state energy of 3.7 eV),
suggesting the possibility of optical pulse suppression11 via a 2PA-
induced excited-state absorption mechanism.12
346, 447; (c) A. Painelli, L. Del Freo and F. Terenziani, Chem. Phys.
Lett., 2001, 346, 470.
6 E. Zojer, W. Wenseleers, M. Halik, C. Grasso, S. Barlow, J. W. Perry,
S. R. Marder and J. L. Bre´das, ChemPhysChem, 2004, 5, 982.
7 (a) S. K. Pati, T. J. Marks and M. A. Ratner, J. Am. Chem. Soc., 2001,
123, 7287; (b) E. Zojer, D. Beljonne, P. Pacher and J. L. Bre´das, Chem.
Eur. J., 2004, 10, 2668.
8 (a) K. Ogawa, T. Zhang, K. Yoshihara and Y. Kobuke, J. Am. Chem.
Soc., 2002, 124, 22; (b) M. Drobizhev, Y. Stepanenko, Y. Dzenis,
A. Karotki, A. Rebane, P. N. Taylor and H. L. Anderson, J. Am.
Chem. Soc., 2004, 126, 15352; (c) D. S. Correˆa, S. L. Oliveira,
L. Misoguti, S. C. Zilio, R. F. Aroca, C. J. L. Constantino and
C. R. Mendonc¸a, J. Phys. Chem. A, 2006, 110, 6433; (d) S.-J. Chung,
S. Zheng, T. Odani, L. Beverina, J. Fu, L. A. Padilha, A. Biesso,
J. M. Hales, X. Zhan, K. Schmidt, A. Ye, E. Zojer, S. Barlow,
D. J. Hagan, E. W. Van Stryland, Y. Yi, Z. Shuai, G. A. Pagani,
J. L. Bre´das, J. W. Perry and S. R. Marder, J. Am. Chem. Soc., 2006,
128, 14444.
In summary, we have shown that D–D9–(D9)–D chromophores
can show high d into a state with energy in the range ca. 3.8–4.1 eV
(corresponding to photon energies of 600–650 nm), which in some
cases is detuned sufficiently from double resonance that these
states can be easily accessed experimentally without interference
from 1PA. The high cross-sections associated with these peaks can
be understood in terms of a correlation-induced redistribution of
oscillator strength. The 2PA spectral features, along with the
excited-state redox potentials for the present molecules, suggest
potential use in 2PA microfabrication.
This material is based upon work supported in part by the STC
Program of the NSF under Agreement No. DMR-0120967. We
also thank the National Science Foundation (CRIF 04-43564), the
AFOSR (FA95500410200), the DARPA (MORPH program,
ONR N00014-04-0095), and NSF-China (Nos. 20420150034,
20433070, 10425420). We thank Greg Walker for supplying a
sample of 7.
9 E. Zojer, D. Beljonne, T. Kogej, S. R. Marder, J. W. Perry and
J. L. Bre´das, J. Chem. Phys., 2002, 116, 3646.
10 (a) B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer,
J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee,
D. McCord-Maughon, J. Qin, H. Ro¨ckel, M. Rumi, X.-L. Wu,
S. R. Marder and J. W. Perry, Nature, 1999, 398, 51; (b) S. H. Park,
T. W. Lim, D.-Y. Yang, N. C. Cho and K.-S. Lee, Appl. Phys. Lett.,
2006, 89, 173133.
11 C. W. Spangler, J. Mater. Chem., 1999, 9, 2013.
12 The strong near-IR absorptions expected for the radical cations and
dications derived from these species also suggest the possibility of optical
pulse suppression via 2PA-induced charge separation (we have
previously reported that [3]2+ absorbs at 1072 nm: S. Zheng,
S. Barlow, C. Risko, T. L. Kinnibrugh, V. N. Khrustalev, S. C. Jones,
M. Yu. Antipin, N. M. Tucker, T. V. Timofeeva, V. Coropceanu,
J. L. Bre´das and S. R. Marder, J. Am. Chem. Soc., 2006, 128,
1812).
Notes and references
1 T.-Z. Lin, S.-J. Chung, K.-S. Kim, X. Wang, G. S. He, J. Swiatkiewicz,
H. E. Pudavar and P. N. Prasad, Adv. Polym. Sci., 2003, 161, 157 and
references therein.
2 (a) M. Albota, D. Beljonne, J.-L. Bre´das, J. E. Ehrlich, J.-Y. Fu,
A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder,
D. McCord-Maughon, J. W. Perry, H. Ro¨ckel, M. Rumi,
1374 | Chem. Commun., 2007, 1372–1374
This journal is ß The Royal Society of Chemistry 2007