Angewandte
Chemie
[3] W. Sluiter, A. Pietersma, J. M. J. Lamers, J. F. Koster, J.
Cardiovasc. Pharmacol. 1993, 22, S37-S44.
Synlett 1990, 694 – 696; c) A. Hasegawa, T. Nagahama, H. Ohki,
K. Hotta, H. Ishida, M. Kiso, J. Carbohydr. Chem. 1991, 10, 493 –
498; d) I. Braccini, C. Derouet, J. Esnault, C. HervØ du Penhoat,
J.-M. Mallet, V. Michon, P. Sinaꢁ, Carbohydr. Res. 1993, 246, 13 –
22.
[4] a) T. Nakashio, T. Narita, M. Sato, S. Akiyama, Y. Kasai, M.
Fujiwara, K. Ito, H. Takagi, R. Kannagi, Anticancer Res. 1997,
17, 293 – 299; b) L. Borsig, News Physiol. Sci. 2004, 19, 16 – 21.
[5] a) J. Y. Ramphal, Z.-L. Zheng, C. Perez, L. E. Walker, S. A.
DeFrees, F. C. A. Gaeta, J. Med. Chem. 1994, 37, 3459 – 3463;
b) B. K. Bradley, M. Kiso, S. Abbas, P. Nikrad, O. Srivasatava, C.
Foxall, Y. Oda, A. Hasegawa, Glycobiology 1993, 3, 633 – 641.
[6] a) W. Stahl, U. Sprengard, G. Kretzschmar, H. Kunz, Angew.
Chem. 1994, 106, 2186 – 2188; Angew. Chem. Int. Ed. Engl. 1994,
33, 2096 – 2098; b) R. Bänteli, B. Ernst, Bioorg. Med. Chem. Lett.
2001, 11, 459 – 462; c) M. Kinnbauer, B. Ernst, W. Wagner, J.
Magnani, A. J. Benie, T. Peters, Glycobiology 2003, 13, 435 – 443.
[7] D. Tyrell, P. James, N. Rao, C. Foxall, S. Abbas, F. Dasgupta, M.
Nashed, A. Hasegawa, M. Kiso, D. Asa, J. Kidd, B. K. Bradley,
Proc. Natl. Acad. Sci. USA 1991, 88, 10372 – 10376.
[8] K. Schaffler, B. Ernst, A. Katapodis, J. L. Magnani, W. T. Wong,
R. Weisemann, T. Peters, Angew. Chem. 1995, 107, 2034 – 2037;
Angew. Chem. Int. Ed. Engl. 1995, 34, 1841 – 1844.
[9] W. S. Somers, J. Tang, G. D. Shaw, R. T. Camphausen, Cell 2000,
103, 467 – 479.
[10] M. J. Bamford, M. Bird, P. M. Gore, D. S. Holmes, R. Priest, J. C.
Prodger, V. Saez, Bioorg. Med. Chem. Lett. 1996, 6, 239 – 244.
[11] a) U. Sprengard, G. Kretzschmar, E. Bartnik, C. Hüls, H. Kunz,
Angew. Chem. 1995, 107, 1104 – 1107; Angew. Chem. Int. Ed.
Engl. 1995, 34, 990 – 993; b) U. Sprengard, M. Schudok, W.
Schmidt, G. Kretzschmar, H. Kunz, Angew. Chem. 1996, 108,
359 – 362; Angew. Chem. Int. Ed. Engl. 1996, 35, 321 – 324; c) M.
Rösch, H. Herzner, W. Dippold, M. Wild, D. Vestweber, H.
Kunz, Angew. Chem. 2001, 113, 3954 – 3957; Angew. Chem. Int.
Ed. 2001, 40, 3836 – 3839.
[27] S. David, S. Hanessian, Tetrahedron 1985, 41, 643 – 663.
[28] R. V. Hoffman, J. Tao, Tetrahedron 1997, 53, 7119 – 7126.
[29] H. Kunz, C. Unverzagt, Angew. Chem. 1988, 100, 1763 – 1765;
Angew. Chem. Int. Ed. Engl. 1988, 27, 1697 – 1699.
[30] L. A. Carpino, J. Am. Chem. Soc. 1957, 79, 98 – 101.
[31] J. Tomasz, Acta Chim. Acad. Sci. Hung. 1971, 70, 255 – 261.
[32] Pure b-anomer [a]2D3 [degcm3 gꢀ1 dmꢀ1] (c = 1.0 gcmꢀ3 in CHCl3):
22: ꢀ44; 23: ꢀ57; 24: ꢀ38; 25: ꢀ56; 26: ꢀ64; 27: ꢀ44.
[33] L. A. Carpino, G. Y. Han, J. Am. Chem. Soc. 1970, 92, 5748 –
5749.
[34] [a]D23 [degcm3 gꢀ1 dmꢀ1] (c = 1.0 gcmꢀ3 in CHCl3): 28: ꢀ27; 29:
ꢀ35; 30: ꢀ32; 31: ꢀ32 (in MeOH); 32: ꢀ43; 33: ꢀ32; 1H NMR
(400 MHz, CDCl3, 1H-1H-COSY): 28: d = 5.31 (d, 1H, J3,4
2.7 Hz, Fuc-4), 4.98 (m, 1H, GlcNAc-1), 4.95 (d, 1H, J3,4
=
=
2.7 Hz, Gal-4), 2.55 ppm (dd, 1H, Jeq,ax = 12.3 Hz, J3,4 = 3.7 Hz,
Sial-3eq); 29: d = 5.53 (d, 1H, J1,2 = 2.7 Hz, Ara-1), 5.00 (t, 1H,
J1,2 ꢁ J1,NH = 9.2 Hz, GlcNAc-1), 4.70 (d, 1H, J1,2 = 7.8 Hz, Gal-
1), 2.55 ppm (dd, 1H, Jeq,ax = 12.1 Hz, J3,4 = 3.9 Hz, Sial-3eq); 30:
d = 5.67–5.63 (m, 2H, l-Gal-4, l-Gal-1), 5.17 (m, 1H, GlcNAc-
1), 4.95 (d, 1H, J3,4 = 3.5 Hz, Gal-4), 2.47 ppm (dd, 1H, Jeq,ax
12.1 Hz, J3,4 = 3.9 Hz, Sial-3eq); 31: d = 5.58 (m, 2H, Fuc-1, Gal-
4); 4.93 (m, 1H, GlcNAc-1), 4.05 ppm (dd, Jvic = 5.1 Hz, Jvic
7.4 Hz, CH-COOMe); 32: d = 5.56 (msmall, 2H, Ara-1, Gal-4),
4.98 (m, 1H, GlcNAc-1), 4.93 (dd, 1H, J1,2 = 3.1 Hz, J2,3
=
=
=
11.0 Hz, Ara-2), 4.05 ppm (dd, 1H, Jvic = 5.5 Hz, Jvic’ = 7,0 Hz,
CH-COOMe); 33: d = 5.65 (db, 1H, J3,4 = 2.7 Hz, l-Gal-4), 5.56
(db, 1H,
J1,2 = 3.1 Hz, l-Gal-1), 5.07 (m, 1H, GlcNAc-1),
4.25 ppm (d, 1H, J1,2 = 8.2 Hz, Gal-1), 1.48 (m, 2H, CH2-
CHCOOMe); HR-ESI-MS: m/z: [M+Na]+ (calcd): 28:
1655.5310 (1655.5287); 29: 1641.5093 (1641.5131); 30:
1713.5386 (1713.5342); 31: 1350.4924 (1350.4904); 32:
1336.4713 (1336.4748); 33: 1408.4906 (1408.4959).
[12] A. Levinovitz, J. Mühlhoff, S. Isenmann, D. Vestweber, J. Cell
Biol. 1993, 121, 449 – 459.
[13] M. Steegmaier, A. Levinovitz, S. Isenmann, E. Borges, M.
Lenter, H. P. Kocher, B. Kleuser, D. Vestweber, Nature 1995,
373, 615 – 620.
[14] a) Z. Mourelatos, J. O. Gonatas, E. Cinato, N. K. Gonatas, DNA
Cell Biol. 1996, 15, 1121 – 1128; b) CFR: Cysteine-rich FGF
receptor (FGF: Fibroblast Growth Factor).
[15] a) M. W. Cappi, W. J. Moree, L. Qiao, T. G. Marron, G. Weitz-
Schmidt, C.-H. Wong, Bioorg. Med. Chem. 1997, 5, 283 – 296;
b) G. Baisch, R. ꢀhrlein, A. Katopodis, M. Streiff, F. Kolbinger,
Bioorg. Med. Chem. Lett. 1997, 7, 2447 – 2450.
[16] a) H. C. Kolb, B. Ernst, Chem. Eur. J. 1997, 3, 1571 – 1578; b) G.
Thoma, W. Kinzy, C. Bruns, J. T. Patton, J. L. Magnani, R.
Bänteli, J. Med. Chem. 1999, 42, 4909 – 4913.
[17] K. Peilstöcker, H. Kunz, Synlett 2000, 823 – 825.
[18] R. R. Schmidt, J. Michel, Angew. Chem. 1980, 92, 763 – 764;
Angew. Chem. Int. Ed. Engl. 1980, 19, 731 – 732.
[19] E. Eichler, H. J. Jennings, M. Gilbert, D. M. Whitfield, Carbo-
hydr. Res. 1999, 319, 1 – 16.
[20] a) D. Baudry, M. Ephritikhine, H. Felkin, J. Chem. Soc. Chem.
Commun. 1978, 694 – 695; b) J. J. Oltvoort, C. A. A. van
Boeckel, J. H. de Koning, J. H. van Boom, Synthesis 1981, 305 –
308.
[35] E. Bayer, W. Rapp, Chem. Pept. Proteins 1986, 3, 3 – 8.
[36] a) R. Knorr, A. Trceziak, W. Baumwarth, D. Gillesen, Tetrahe-
dron Lett. 1989, 30, 1927 – 1930; b) V. Dourtoglou, J.-C. Ziegler,
B. Gross, Tetrahedron Lett. 1978, 19, 1269 – 1272.
[37] W. König, R. Geiger, Chem. Ber. 1970, 103, 788 – 798.
[38] L. A. Carpino, A. El-Faham, C. Minor, F. Albericio, J. Chem.
Soc. Chem. Commun. 1994, 201 – 203.
[39] L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397 – 4398.
[40] G. ZemplØn, A. Kunz, Ber. Dtsch. Chem. Ges. 1923, 56, 1705 –
1710.
[41] Glycopeptide 34–39: amount, [a]2D3 [degcm3 gꢀ1 dmꢀ1
] (c =
0.5 gcmꢀ3 in H2O), HR-ESI-MS (with 0.1% TFA) [M + Na]+
(calcd): 34: 42 mg, ꢀ54, 1972.7614 (1972.7634); 35: 46 mg, ꢀ47,
1958.7511 (1958.7477); 36: 49 mg, ꢀ45, 1988.7568 (1988.7583);
37: 75 mg, ꢀ60, 1835.7638 (1835.7673); 38: 70 mg, ꢀ29,
1799.7725 (1799.7698, [M+H]+); 39: 67 mg, ꢀ28 (in MeOH),
1829.7859 (1829.7803, [M+H]+). The structures were confirmed
by 600-MHz 1H NMR and 150.9-MHz 13C NMR spectroscopy.
[42] M. Hahne, U. Jäger, S. Isenmann, R. Hallmann, D. Vestweber, J.
Cell Biol. 1993, 121, 655 – 664.
[21] H. Lönn, Carbohydr. Res. 1985, 139, 105 – 113.
[22] R. U. Lemieux, K. B. Hendricks, R. V. Stick, K. James, J. Am.
Chem. Soc. 1975, 97, 4056 – 4062.
[23] S. Sato, M. Mori, Y. Ito, T. Ogawa, Carbohydr. Res. 1986, 155,
c6 – c10.
[24] a) A. Marra, P. Sinaꢁ, Carbohydr. Res. 1989, 187, 35 – 42; b) B.
Liebe, H. Kunz, Angew. Chem. 1997, 109, 629 – 631; Angew.
Chem. Int. Ed. Engl. 1997, 36, 618 – 621.
[43] In a dilution series (0–6 mm), the glycopeptides and the E-
selectin-IgG construct[42] (25 mgmLꢀ1) were incubated in cell
culture media (pH 7.4) for one hour at 48C. The murine
neutrophile cell line 32Dcl3 was mixed with the glycopeptide/
E-selectin-IgG solutions. After one hour at 48C, the cells were
incubated with a phycoerythrin-linked anti-IgG antibody for
30 minutes at 48C. The bound E-selectin-IgG was analyzed by
measuring the phycoerythrin fluorescence in a flowcytometer
(FACSCanto, Becton-Dickinson). IC50 values were derived from
binding curves.
[25] F. Dasgupta, P. J. Garegg, Carbohydr. Res. 1988, 177, c13 – c17.
[26] a) A. J. Ratcliffe, B. Fraser-Reid, J. Chem. Soc. Perkin Trans. 1
1990, 747 – 750; b) R. R. Schmidt, M. Behrendt, A. Toepfer,
Angew. Chem. Int. Ed. 2007, 46, 2108 –2111
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2111