Synthesis of 3′-Deoxynucleosides
pure sample was obtained by crystallization (MeOH) as colorless
blocks: mp 96-98 °C; UV max 226, 265 nm (ꢀ 25 700, 11 200),
min 214, 245 nm (ꢀ 22 600, 6800); 1H NMR (CDCl3) δ 0.10, 0.11
(2 × s, 2 × 3H), 0.90 (s, 9H), 3.76, 3.77 (2 × s, 2 × 3H), 3.78
(dd, J ) 4.9, 10.7 Hz, 1H), 3.88 (q, J ) 4.4 Hz, 1H), 3.98 (dd, J
) 3.9, 10.7 Hz, 1H), 4.33-4.36 (m, 2H), 4.63 (d, J ) 13.7 Hz,
1H), 4.71, 5.09 (2 × d, J ) 13.7 Hz, 2 × 1H), 5.66 (d, J ) 8.3 Hz,
1H), 5.92 (d, J ) 3.9 Hz, 1H), 6.73 (d, J ) 8.7 Hz, 2H), 6.83,
7.15, 7.48 (3 × d, J ) 8.8 Hz, 3 × 2H), 7.62 (d, J ) 8.3 Hz, 2H);
13C NMR (CDCl3) δ -5.7, -5.4, 18.0, 25.1, 25.7, 43.2, 54.80,
54.85, 67.0, 72.0, 79.8, 86.4, 88.7, 101.3, 113.3, 113.5, 128.5, 128.7,
129.5, 130.5, 137.5, 150.5, 158.8, 159.3, 161.9; FAB-MS m/z 731
([M + Na+] 100%), 711, 605; HRMS (C31H41IN2O7SiNa) calcd
731.1625, found 731.1626.
(EtOAc/hexanes, 1:4 f EtOAc) gave 9b (3.6 g, 97%). This material
was dissolved in pyridine (10 mL) and Ac2O (5 mL), and the
solution was stirred for 17 h at ambient temperature. Volatiles were
evaporated in vacuo, and the residue was chromatographed (EtOAc/
hexanes, 1:2 f EtOAc) to give 9c as a yellow oil (3.12 g, 72%):
UV max 223, 259 nm (ꢀ 13 300, 8800), min 216, 240 nm (ꢀ 12 800,
5800); 1H NMR (CDCl3) δ 2.02, 2.08 (2 × s, 2 × 3H), 2.39 (d, J
) 15.1 Hz, 1H), 3.69 (s, 3H), 4.37-4.45 (m, 2H), 4.86, 4.99 (2 ×
d, J ) 13.7 Hz, 2 × 1H), 5.20 (d, J ) 6.3 Hz, 1H), 5.78 (d, J )
8.3 Hz, 1H), 6.47 (d, J ) 6.3 Hz, 1H), 6.74 (d, J ) 8.8 Hz, 2H),
7.19 (d, J ) 8.3 Hz, 1H), 7.30 (d, J ) 8.8 Hz, 2H); 19F NMR
(CDCl3) δ 129.3 (dd, J ) 15.0, 170.9 Hz, 1F), 149.7 (d, J ) 170.9
Hz, 1F); 13C NMR (CDCl3) δ 20.3, 20.6, 33.3 (t, J ) 12.1 Hz),
43.8, 55.1, 59.4, 68.0 (t, J ) 11.9 Hz), 74.7, 95.5 (d, J ) 3.7 Hz),
103.6, 110.4 (t, J ) 297.7 Hz), 113.6, 128.5, 130.3, 136.0 (d, J )
7.3 Hz), 150.7, 159.0, 161.8, 169.4, 170.3; FAB-MS m/z 503 ([M
+ Na+] 100%); HRMS (C22H22F2N2O8Na) calcd 503.1245, found
503.1242.
1-[2,5-Di-O-acetyl-3-deoxy-3,4-C-(difluoromethylene)-â-D-ri-
bofuranosyl]-3-(4-methoxybenzyl)uracil (10c). Treatment of 10a
(7.4 g, 11.6 mmol) according to the procedure described for 9a f
9b f 9c gave 10c as a yellow oil (3.28 g; 59%, two steps). UV
max 223, 258 nm (ꢀ 13 600, 8 800), min 217, 240 nm (ꢀ 13 100,
5 800); 1H NMR (CDCl3) δ 2.03, 2.05 (2 × s, 2 × 3H), 2.69 (dd,
J ) 14.6, 7.0 Hz, 1H), 3.70 (s, 3H), 4.37 (dd, J ) 13.2, 1.8 Hz,
1H), 4.51 (d, J ) 13.2 Hz, 1H), 4.92, 4.96 (2 × d, J ) 13.6 Hz, 2
× 1H), 5.50 (d, J ) 3.7 Hz, 1H), 5.71 (d, J ) 8.0 Hz, 1H), 5.74
(m, 1H), 6.75 (d, J ) 8.4 Hz, 2H), 7.03 (d, J ) 8.0 Hz, 1H), 7.33
(d, J ) 8.4 Hz, 2H); 19F NMR (CDCl3) δ 133.6 (dd, J ) 14.9,
170.9 Hz, 1F), 148.7 (d, J ) 170.9 Hz, 1F); 13C NMR (CDCl3) δ
20.57, 20.63, 33.1 (t, J ) 12.6 Hz), 43.6, 55.2, 59.7, 71.6 (t, J )
11.5 Hz), 77.4, 96.7, 102.8, 111.5 (dd, J ) 294.5, 306.7 Hz), 113.7,
128.4, 130.6, 139.6, 150.4, 159.1, 162.0, 170.2, 170.5; FAB-MS
m/z 481 ([M + H+] 100%); HRMS (C22H23F2N2O8) calcd 481.1422,
found 481.1418.
1-[3-Deoxy-3,4-C-(difluoromethylene)-â-D-ribofuranosyl]u-
racil (10e). A solution of CAN (12.3 g, 22.5 mmol) in H2O (15
mL) was added to a stirred solution of 10c (2.7 g, 5.63 mmol) in
CH3CN (150 mL), and stirring was continued at 70 °C for 1.5 h.
H2O was added, the mixture was extracted (EtOAc, 3 × 100 mL),
and volatiles were evaporated in vacuo from the combined organic
phase. The residue was chromatographed (EtOAc/hexanes, 1:3 f
EtOAc) to give crude 1-[2,5-di-O-acetyl-3-deoxy-3,4-C-(difluo-
romethylene)-â-D-ribofuranosyl]uracil (10d, 1.5 g). This material
was added to a stirred solution of 1,4-dioxane (18 mL) and 30%
NH3/H2O (5 mL), and stirring was continued overnight. Volatiles
were evaporated, and the residue was dissolved (H2O, 20 mL) and
applied to a column of Dowex 1 × 2 (OH-) resin (in H2O). Elution
[H2O f MeOH f AcOH/MeOH (1:10)] and evaporation of
volatiles from UV-absorbing fractions gave 10e (740 mg; 48%, 2
steps) as a yellow syrup. An analytically pure sample was obtained
after several recrystallizations (EtOH): mp 180-182 °C; UV max
259 nm (ꢀ 9600), min 229 nm (ꢀ 2800); 1H NMR (CD3OD) δ 2.43
(d, J ) 16.6 Hz, 1H), 3.89 (d, J ) 13.2 Hz, 1H), 3.98 (dd, J )
13.2, 2.9 Hz, 1H), 4.52 (d, J ) 6.3 Hz, 1H), 5.79 (d, J ) 7.8 Hz,
1H), 6.33 (d, J ) 6.3 Hz, 1H), 7.48 (d, J ) 7.8 Hz, 1H); 19F NMR
(CD3OD) δ 129.7 (dd, J ) 16.0, 168.7 Hz, 1F), 148.9 (d, J )
168.7 Hz, 1F); 13C NMR (CD3OD) δ 36.2 (t, J ) 11.4 Hz), 59.1,
72.2 (t, J ) 11.8 Hz), 76.1, 98.6 (d, J ) 4.6 Hz), 104.0, 113.6 (t,
J ) 296.0 Hz), 141.3 (d, J ) 6.9 Hz), 152.4, 165.8; EI-MS m/z
276 ([M+] 2%); HRMS (C10H10F2N2O5) calcd 276.0557, found
276.0563. Anal. Calcd for C10H10F2N2O5: C, 43.49; H, 3.65; N
10.14. Found: C, 43.31; H, 3.86; N 9.96.
1-[5-O-(tert-Butyldimethylsilyl)-3-deoxy-2-O-(4-methoxyben-
zyl)-â-D-glycero-pent-3-enofuranosyl]-3-(4-methoxybenzyl)u-
racil (8). A stirred solution of 7 (4.0 g, 5.6 mmol) and DABCO
(2.0 g, 17.9 mmol) in benzene (50 mL) was refluxed for 20 h and
concentrated. Chromatography (EtOAc/hexanes, 1:6 f 1:3) gave
8 (3.2 g, 96%) as a pale yellow oil: UV max 226, 265 nm (ꢀ 27 700,
1
11 200), min 214, 245 nm (ꢀ 24 500, 7300); H NMR (CDCl3) δ
0.09 (s, 6H), 0.90 (s, 9H), 3.76 (s, 3H), 3.79 (s, 3H), 4.23, 4.26 (2
× d, J ) 13.7 Hz, 2 × 1H), 4.46 (s, 1H), 4.59, 4.72, 5.07, 5.09 (4
× d, J ) 13.7 Hz, 4 × 1H), 5.17 (s, 1H), 5.71 (d, J ) 8.3 Hz, 1H),
6.45 (s, 1H), 6.82, 6.85 (2 × d, J ) 8.8 Hz, 2 × 2H), 7.10 (d, J )
8.3 Hz, 1H), 7.22, 7.48 (2 × d, J ) 8.8 Hz, 2 × 2H); 13C NMR
(CDCl3) δ -5.61, -5.57, 18.1, 25.6, 43.5, 55.0, 58.0, 70.4, 85.0,
90.8, 98.9, 102.2, 113.6, 113.7, 128.8, 129.3, 129.5, 129.6, 130.6,
136.5, 150.2, 159.0, 159.3, 162.2, 162.4; FAB-MS m/z 603 ([M +
Na+] 100%); HRMS (C31H40N2O7SiNa) calcd 603.2502, found
603.2509.
1-[5-O-(tert-Butyldimethylsilyl)-3-deoxy-3,4-C-(difluorometh-
ylene)-2-O-(4-methoxybenzyl)-r-L-arabinofuranosyl]-3-(4-meth-
oxybenzyl)uracil16 (9a) and 1-[5-O-(tert-Butyldimethylsilyl)-3-
deoxy-3,4-C-(difluoromethylene)-2-O-(4-methoxybenzyl)-â-D-
ribofuranosyl]-3-(4-methoxybenzyl)uracil16 (10a). Powdered NaI
(30.0 g, 200 mmol) was stirred and heated (170 °C, oil bath) under
vacuum for 1 h in a flask (500 mL) equipped with a Teflon valve,
then allowed to cool to ambient temperature. (CF3)2Hg (17.4 g,
50.8 mmol) in dried THF (50 mL) and 8 (15.0 g, 25.4 mmol) were
injected through a septum (under N2). The reaction mixture was
heated at 70 °C for 24 h, and volatiles were evaporated. Chroma-
tography (EtOAc/hexanes, 1:9 f 1:6) gave 9a (7.4 g, 46%): 1H
NMR (CDCl3) δ 0.09, 0.11 (2 × s, 2 × 3H), 0.93 (s, 9H), 2.27 (d,
J ) 15.6 Hz, 1H), 3.74, 3.76 (2 × s, 2 × 3H), 3.87 (d, J ) 12.7
Hz, 1H), 4.04-4.08 (m, 2H), 4.40, 4.50 (2 × d, J ) 12.2 Hz, 2H),
5.02, 5.07 (2 × d, J ) 13.7 Hz, 2H), 5.68, 7.03 (2 × d, J ) 8.3
Hz, 2 × 1H), 6.51 (d, J ) 6.3 Hz, 1H), 6.68, 6.82, 7.06 7.49 (4 ×
m, 4 × 2H); 19F NMR (CDCl3) δ 129.5 (dd, J ) 15.0, 168.7 Hz,
1F), 148.8 (d, J ) 168.8 Hz, 1F); FAB-MS m/z 631 ([M + H+]
40%), 121 (100%); HRMS (C32H41F2N2O7Si) calcd 631.2645, found
631.2654.
Further elution of the column with EtOAc/hexanes (1:1) gave
10a (6.0 g, 37%): 1H NMR (CDCl3) δ 0.05, 0.06 (2 × s, 2 × 3H),
0.88 (s, 9H), 2.27 (dd, J ) 6.8, 14.6 Hz, 1H), 3.75-3.80 (m, 1H),
3.760, 3.764 (2 × s, 2 × 3H), 4.11 (dd, J ) 3.4, 12.2 Hz, 1H),
4.44-4.54 (m, 3H), 5.03, 5.05 (2 × d, J ) 13.7 Hz, 2H), 5.69 (d,
J ) 7.8 Hz, 1H), 5.97-6.00 (m, 1H), 6.74, 6.83, 7.11, 7.48 (4 ×
m, 4 × 2H), 7.29 (d, J ) 7.8 Hz, 1H); 19F NMR (CDCl3) δ 133.3
(dd, J ) 15.0, 170.9 Hz, 1F), 147.6 (d, J ) 170.9 Hz, 1F); FAB-
MS m/z 653 ([M + Na+] 10%), 141 (100%); HRMS (C32H40F2N2O7-
SiNa) calcd 653.2465, found 653.2468.
1-[2,5-Di-O-acetyl-3-deoxy-3,4-C-(difluoromethylene)-r-L-
arabinofuranosyl]-3-(4-methoxybenzyl)uracil (9c). A solution of
CAN (15.4 g, 28.1 mmol) in H2O (20 mL) was added to a stirred
solution of 9a (6.0 g, 9.4 mmol) in CH3CN (200 mL). Stirring was
continued at ambient temperature for 2.5 h, H2O was added, and
the solution was extracted (EtOAc, 3 × 100 mL). The combined
organic phase was concentrated in vacuo, and chromatography
1-[3-Deoxy-3,4-C-(difluoromethylene)-r-L-arabinofuranosyl]-
uracil (9e). Treatment of 9c (3.1 g, 6.46 mmol) with CAN followed
by ammonolysis (as described for 10c f 10e) gave 9e (1.19 g;
67%, 2 steps) as a colorless oil. Purification by PTLC (EtOAc/
MeOH, 7:1) gave 9e: UV max 259 nm (ꢀ 9600), min 229 nm (ꢀ
1
3000); H NMR (Me2CO-d6) δ 2.65 (dd, J ) 6.8, 16.2 Hz, 1H),
J. Org. Chem, Vol. 72, No. 9, 2007 3323