C O M M U N I C A T I O N S
Scheme 2
chiral amide complex would lead to the formation of the N-bound
nitrile complexes. We are now working on further expansion of
the substrate scope and further studies aimed at clarifying the
mechanism.
Acknowledgment. This work was financially supported by a
grant-in-aid from the Ministry of Education, Science, Sports and
Culture of Japan (No. 18065007) and partially supported by The
21st Century COE and G-COE Programs.
to its strong bonding ability toward the metal center.8 An increase
in the steric bulkiness in the ester group of 4 caused a decrease in
the ee value of the products. The aromatic ring-substituted R-phenyl-
R-cyanoacetates (3b-d) reacted with 4a in toluene containing chiral
Ir catalyst at 0 °C for 2 h to give the chiral adduct with 91-96%
ee in excellent yields regardless of the electronic effect of the
substituent. Similarly, R-cyanoacetate with thienyl group (3e)
provided the adduct with 95% ee.3k
Supporting Information Available: Experimental procedures of
the catalytic direct amination reaction, spectroscopic data for com-
pounds, and NMR and computational (B3LYP/SDD) analysis data. This
References
(1) Examples of C-N bond formation using azodicarboxylates as nitrogen
sources: (a) Evans, D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997, 119,
6452-6453. (b) Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595-
598. (c) Yamashita, Y.; Ishitani, H.; Kobayashi, S. J. Can. Chem. 2000,
78, 666-672. (d) Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z.; Ye, L.;
Deng, Y.; Chen, G. Org. Lett. 2004, 6, 2193-2196.
A stoichiometric reaction of the amido Ir complex with tert-
butyl R-cyanoacetate 3a provided further insight into the reaction
mechanism. The reaction of 3a with the amido Ir complex, 2a (2a/
3a ) 1:1-1.5) in CH2Cl2 proceeded rapidly to give a mixture of
two N-bound nitrile complexes, Cp*Ir[NCC(C6H5)(COOC(CH3)3)]-
(2) (a) Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 2420-2021.
(b) Margio, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003,
42, 1367-1369. (c) Kan, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47,
4565-4568. (d) Comelles, J.; Pericas, AÅ .; Moreno-Man˜as, M.; Vallribera,
A.; Drudis-Sole´, G.; Lledos, A.; Parella, T.; Roglans, A.; Garc´ıa-Granda,
S.; Roces-Ferna´ndez, L. J. Org. Chem. 2007, 72, 2077-2087.
(3) (a) List, B. J. Am. Chem. Soc. 2002, 124, 5656-5657. (b) Bøgevig, A.;
Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2002, 41, 1790-1793. (c) Chowdari, N. S.; Barbas, C.
F., III. Org. Lett. 2005, 7, 867-870. (d) Suri, J. T.; Steiner, D. D.; Barbas,
C. F., III. Org. Lett. 2005, 7, 3885-3888. (e) Kumaragurubaran, N.; Juhl,
K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2002,
124, 6254-6255. (f) Duthaler, R. O. Angew. Chem., Int. Ed. 2003, 42,
975-978. (g) Iwamura, H.; Mathew, S. P.; Blackmond, D. G. J. Am.
Chem. Soc. 2004, 126, 11770-11771. (h) Xu, X.; Yabuta, T.; Yuan, P.;
Takemoto, Y. Synlett 2006, 137-140. (i) Terada, M.; Nakano, M.; Ube,
H. J. Am. Chem. Soc. 2006, 128, 16044-16045. (j) Pihko, P. M.;
Pohjakallio, A. Synlett 2004, 2115-2118. (k) Saaby, S.; Bella, M.;
Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120-8121. (l) Liu, X.;
Li, H.; Deng, L. Org. Lett. 2005, 7, 167-169. (m)Jiang, H.; Nielsen, J.
B.; Nielsen, M.; Jørgensen, K. A. Chem. Eur. J. 2007, 13, 9068-9075.
(4) Mashiko, T.; Hara, K.; Tanaka, D.; Fujiwara, Y.; Kumagai, N.; Shibasaki,
M. J. Am. Chem. Soc. 2007, 129, 11342-11343.
1
[(S,S)-Msdpen] (6a,b) (Scheme 2). H and 13C NMR spectra of
the reaction mixture at -50 °C showed two sets of sharp signals
1
due to 6a and 6b.9 The assignment of signals in the H NMR
spectrum was accomplished by the COSY experiment. Two NH2
1
protons in the H spectrum of the minor isomer 6a resonate at δ
4.02 (triplet, trans to the CHC6H5) and 4.48 (doublet, cis to the
1
CHC6H5). In the H NMR spectrum of the major isomer 6b, the
corresponding doublet resonates very close to that of 6a (δ 4.22),
whereas the triplet is strongly downfield shifted (δ 6.21), indicating
the presence of the intramolecular hydrogen bond in 6b that is
absent in 6a.9 On raising the temperature, the signals in the 1H and
13C NMR spectra of 6a and 6b broadened reversibly, indicating
that 6a and 6b are equilibrating in solution. The IR spectrum of 6
in KBr showed that a CN stretching band appears at 2174 cm-1
,
(5) (a) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew.
Chem., Int. Ed. 1997, 36, 285-288. (b) Noyori, R.; Hashiguchi, S. Acc
Chem. Res. 1997, 30, 97-102. (c) Ikariya, T.; Murata, K.; Noyori, R.
Org. Biomol. Chem. 2006, 4, 393-406. (d) Ikariya, T.; Blacker, A. J.
Acc. Chem. Res. 2007, 40, 1300-1308.
which is lower than that in free cyanoacetate (2263 cm-1), indicating
that 6 has a structure bearing the N-bonded nitrile group, as
observed in the reported cyanoester complexes.10
(6) (a) Watanabe, M.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2003, 125,
7508-7509. (b) Watanabe, M.; Ikagawa, A.; Wang, W.; Murata, K.;
Ikariya, T. J. Am. Chem. Soc. 2004, 126, 11148-11149.
On the basis of the absolute configuration, R, of the R-aminated
product3l and the results of a combined NMR9 and computational
(B3LYP/SDD) analysis (Supporting Information), we concluded
that the enantioselection in the reaction may occur through a
concerted formation of C-N and H-N bonds taking place in the
N-bound cyanoester complex 6a as shown in Scheme 2. The
azodicarboxylate might approach the N-bound cyanoester anion by
interaction of incoming nitrogen atom with the NH proton of the
amino group in the Ir complex 6a. On the other hand, the
intramolecular hydrogen bonding to the equatorial NH proton in
the conformer 6b cannot participate in the formation of a similar
transition state. Thus, the reactants 3 and 4 are activated sequentially
by the bifunctional catalyst to facilitate the enantioselective C-N
bond forming reaction.
(7) (a) Murata, K.; Ikariya, T.; Noyori, R. J. Org. Chem. 1999, 64, 2186-
2187. (b) Li, X.; Blacker, J.; Houson, I.; Wu, X.; Xiao, J. Synlett 2006,
1155-1160.
(8) An increase in the S/C to 500 caused a serious decrease in the ee value
of the product possibly due to the substrate inhibition as observed in CH3-
CN.
(9) 13C NMR and DEPT spectra at -50 °C showed that the deprotonated
anionic carbon resonates at δ 58.6 in 6b (anionic carbon for minor product
6a had not been observed), whereas the metal-bonded nitrile carbon atom
appears between δ 135.2 and 140.2 in 6b and δ 137.1 and 139.2 in 6a,
which is notably down-field shifted compared to free 4 (δ 116.0).
(10) (a) Naota, T.; Tannna, A.; Kamuro, S.; Murahashi, S.-I. J. Am. Chem.
Soc. 2002, 124, 6482-6843. (b) Murahashi, S.-I.; Naota, T.; Taki, H.;
Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka,
M.; Hirano, M.; Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436-12451.
(c) Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-
3310. (d) Kuwano, R.; Miyazaki, H.; Ito, Y. Chem. Commun. 1998, 71-
72. (e) Hirano, M.; Takenaka, A.; Mizuno, Y.; Hiraoka, M.; Komiya, S.
J. Chem. Soc., Dalton Trans. 1999, 3209-3216. (f) Hirano, M.; Kiyota,
S.; Imoto, M.; Komiya, S. Chem. Commun. 2000, 1679-1680. (g)
Murahashi S.-I.; Take, K.; Naota, T.; Takaya, H. Synlett 2000, 7, 1016-
1018. (h) Kujime, M.; Hikichi, S.; Akita, M. Organometallics 2001, 20,
4049-4960.
In summary, the bifunctional chiral amido Ir complex 2 catalyzed
asymmetric electrophilic direct amination of R-substituted R-cy-
anoacetates using azodicarboxylates proceeds rapidly to provide
the corresponding hydrazine adducts in high yields and with
excellent ee values. The deprotonation of cyanoacetates with the
JA710273S
9
J. AM. CHEM. SOC. VOL. 130, NO. 7, 2008 2159