â
-Hydrogen Kinetic Effect
A R T I C L E S
geometrical isomerization,11 exchange reactions,12 and fluxional
motions of coordinated ligands.13 Another promising feature of
unsaturated platinum(II) chemistry is ligand cycloplatination14,15
or successful C-H activation under mild conditions by com-
plexes of the form [Pt(N-N)(CH3)(solv)]+, where N-N is a
bidentate nitrogen-centered ligand and solv is a weakly coor-
dinating solvent.16 Likewise, dissociative pathways were pro-
posed for a number of cases in palladium(II) chemistry,
isomerization, ligand rotation, â-elimination, and palladium-
catalyzed cross-coupling reactions.17
Chart 1. View of Some Cationic T-Shaped Platinum(II) Molecules
Stabilized by Agostic Interactions
complexes trans-[Pt(CH3)L2]+ supported by a δ-agostic interac-
tion from the bulky phosphine PR2-(2,6-Me2C6H3), [R ) Ph or
Cy] (complex C in Chart 1).20
Despite the kinetic perception of the intermediacy of such
elusive coordinatively unsaturated intermediates in a number
of fundamental organometallic processes, and their recognized
importance in homogeneous catalysis and bond activation, direct
proof of 14-electron platinum(II) complexes has been difficult
to find. The reason is that unsaturation on the metal can be
easily relieved by coordination of the solvent or of anions on
forming 16-electron species, and dimerization is also a reason-
able alternative. Very few papers have been published so far
that describe the structural characterization of such compounds.
Spencer et al. have described the cationic [Pt(R)(P-P)]+
complexes (P-P ) chelating ligand and R ) ethyl, norbornyl)
that show â-agostic C-H interactions (complex A in Chart 1),18
Ingleson et al. have reported on the complex [Pt(CH3)(iPr3P)2]+
that is stabilized by â-agostic C-H interactions (complex B in
Chart 1),19 and Baratta et al. have prepared Pt(II) cationic
Related complexes of isoelectronic Ni(II),21 Rh(I),22,23 and
Pd(II)24-27 have also been described. Judging from the bonding
and structural features of the species mentioned previously, the
challenge to isolate stable 14-electron T-shaped compounds
relies on the use of non-innocent, preferably bulky, ligands that
guarantee some form of protection of the fourth coordination
site and a certain extent of electron transfer through C-H‚‚‚‚
M agostic interactions to a vacant orbital of the metal. Agostic
interactions appear in a number of highly diverse transition and
lanthanide metal compounds and have been scrutinized inten-
sively by X-ray crystallography, NMR, or computational
techniques.28 The C-H‚‚‚‚M interaction seems to be particularly
favored by steric constraints brought about by bulky ligands.29
Much less understood is the role of agostic interactions on the
reactivity, although it appears to be crucial in the reaction of
â-hydride elimination5 as well as in the control of the tacticity
of polymers.30
When an incipient â-agostic interaction by a dangling C-H
bond stabilizes a T-shaped transient three-coordinate transition
state or intermediate, this results in a sharp increase of the
reaction rate. We discovered this phenomenon in kinetic studies
of dissociative processes in platinum(II) chemistry, as ligand
exchange and substitution performed on the novel complex cis-
[Pt(Hbph)2(dmso)2] (Hbph- ) η1-biphenyl monoanion).15,31 The
(11) (a) Romeo, R. Comments Inorg. Chem. 2002, 23, 79-100 and references
therein. (b) Anderson, G. K.; Cross, R. J. Chem. Soc. ReV. 1980, 9, 185-
215.
(12) Scott, J. D.; Puddephatt, R. J. Organometallics 1983, 2, 1643-1648.
(13) (a) Romeo, R.; Carnabuci, S.; Fenech, L.; Plutino, M. R.; Albinati, A.
Angew. Chem., Int. Ed. 2006, 45, 4494-4498. (b) Romeo, R.; Carnabuci,
S.; Plutino, M. R.; Romeo, A.; Rizzato, S.; Albinati, A. Inorg. Chem. 2005,
44, 1248-1262. (c) Romeo, R.; Fenech, L.; Carnabuci, S.; Plutino, M. R.;
Romeo, A. Inorg. Chem. 2002, 41, 2839-2847. (d) Romeo, R.; Fenech,
L.; Monsu` Scolaro, L.; Albinati, A.; Macchioni, A.; Zuccaccia, C. Inorg.
Chem. 2001, 40, 3293-3302.
(14) Romeo, R., Plutino, M. R., Romeo, A. HelV. Chim. Acta 2005, 88, 507-
522.
(15) Plutino, M. R.; Monsu` Scolaro, L.; Albinati, A.; Romeo, R. J. Am. Chem.
Soc. 2004, 126, 6470-6484.
(16) (a) Williams, T. J.; Labinger, J. A.; Bercaw, J. E. Organometallics 2007,
26, 281-287. (b) Driver, T. G.; Williams, T. J.; Labinger, J. A.; Bercaw,
J. E. Organometallics, 2007, 26, 294-301. (c) Lersch, M.; Tilset, M. Chem.
ReV. 2005, 105, 2471-2526. (d) Labinger, J. A.; Bercaw, J. E. Nature
2002, 417, 507-514. (e) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J.
Am. Chem. Soc. 2002, 124, 1378-1399. (f) Johansson, L.; Tilset, M.;
Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2000, 122, 10846-10855.
(g) Procelewska, J.; Zahl, A.; van Eldik, R.; Zhong, H. A.; Labinger, J.
A.; Bercaw, J. E. Inorg. Chem. 2002, 41, 2808-2810. (h) Johansson, L.;
Ryan, O. B.; Tilset, M. J. Am. Chem. Soc. 1999, 121, 1974-1975. (i)
Johansson, L.; Ryan, O. B.; Ro¨mming, C.; Tilset, M. J. Am. Chem. Soc.
2001, 123, 6579-6590. (j) Johansson, L.; Tilset, M. J. Am. Chem. Soc.
2001, 123, 739-740. (k) Holtcamp, M. W.; Henling, L. M.; Day, M. W.;
Labinger, J. A.; Bercaw, J. E. Inorg. Chim. Acta 1998, 270, 467-478. (l)
Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H.
Science 1998, 280, 560-564. (m) Wick, D. D.; Goldberg, K. I. J. Am.
Chem. Soc. 1997, 119, 10235-10236. (n) Fekl, U.; Goldberg, K. I. AdV.
Inorg. Chem. 2003, 54, 259-320.
(20) Baratta, W.; Stoccoro, S.; Doppiu, A.; Herdtweck, E.; Zucca, A.; Rigo, P.
Angew. Chem., Int. Ed. 2003, 42, 105-109.
(21) Hay-Motherwell, R.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M. B.
Polyhedron 1996, 15, 3163-3166.
(22) Yared, Y. W.; Miles, S. L.; Bau, R.; Reed, C. A. J. Am. Chem. Soc. 1977,
99, 7076-7078.
(23) Urtel, H.; Meier, C.; Eisentra¨nger, F.; Rominger, F.; Joschek, J. P.;
Hofmann, P. Angew. Chem., Int. Ed. 2001, 40, 781-784.
(24) Stambuli, J. P.; Bu¨hl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124,
9346-9347.
(25) Yamashita, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5344-5345.
(26) Stambuli, J. P; Incarvito, C. D.; Bu¨hl, M.; Hartwig, J. F. J. Am. Chem.
Soc. 2004, 126, 1184-1194.
(27) Campora, J.; Gutie´rrez-Puebla, E.; Lopez, J. A.; Monge, A.; Palma, P.;
Del Rio, D.; Carmona, E. Angew. Chem., Int. Ed. 2001, 40, 3641-3644.
(28) (a) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395-
408. (b) Brookhart, M.; Green, M. L. H.; Wong, L. Prog. Inorg. Chem.
1988, 36, 1-124. (c) Crabtree, R. H.; Hamilton, D. G. AdV. Organomet.
Chem. 1988, 28, 299-338. (d) Clot, E.; Eisenstein, O. Structure and
Bonding Book Series. In Principles and Applications of Density Functional
Theory in Inorganic Chemistry II; Kaltsoyannis, N., McGrady, J. E., Eds.;
Springer: Berlin, 2004; Vol. 113, pp 1-36. (e) Crabtree, R. H. Angew.
Chem., Int. Ed. Engl. 1993, 32, 789-805. (f) Canty, A. J.; van Koten, G.
Acc. Chem. Res. 1995, 28, 406-413. (g) Yao, W.; Eisenstein, O.; Crabtree,
R. H. Inorg. Chim. Acta 1997, 254, 105-111. (h) Ogasawara, M.; Saburi,
M. Organometallics 1994, 13, 1911-1917.
(17) (a) Minniti, D. Inorg. Chem. 1994, 33, 2631-2634. (b) Louie, J.; Hartwig,
J. F. J. Am. Chem. Soc. 1995, 117, 11598-11599. (c) Casado, A. L.;
Casares, J. A.; Espinet, P. Inorg. Chem. 1998, 37, 4154-4156. (d) Casares,
J. A.; Coco, S.; Espinet, P.; Lin, Y. S. Organometallics 1995, 14, 3058-
3067. (e) Gelling, A.; Orrell, K. G.; Osborne, A. G.; Sik, V. J. Chem. Soc.,
Dalton Trans. 1998, 937-946. (f) Albe´niz, A. C.; Casado, A. L.; Espinet,
P. Inorg. Chem. 1999, 38, 2510-2515. (g) Albe´niz, A. C.; Espinet, Mart´ın-
Ruiz, B. Chem.sEur. J. 2001, 7, 2481-2489. (h) Brown, J. M.; Cooley,
N. A. Chem. ReV. 1988, 88, 1031-1046. (i) Bartolome´, C.; Espinet, P.;
Mart´ın-AÄ lvarez, J. M.; Villafao`e, F. Eur. J. Inorg. Chem. 2004, 2326-
2337. (j) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234-
245. (k) Hartwig, J. F. Pure Appl. Chem. 1999, 71, 1417-1423. (l) Miyaura,
N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513-519. (m)
Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992-4998.
(18) (a) Carr, N.; Mole, L.; Orpen, A. G.; Spencer, J. L. J. Chem. Soc., Dalton
Trans. 1992, 2653-2662. (b) Mole, L.; Spencer, J. L.; Carr, N.; Orpen, A.
G. Organometallics 1991, 10, 49-52.
(29) (a) Cooper, A. C.; Clot, E.; Maseras, F.; Eisenstein, O.; Caulton, K. G. J.
Am. Chem. Soc. 1999, 121, 97-106. (b) Ujaque, G.; Cooper, A. C.;
Maseras, F.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1998, 120,
361-365. (c) Jaffart, J.; Etienne, M.; Maseras, F.; McGrady, J. E.;
Eisenstein, O. J. Am. Chem. Soc. 2001, 123, 6000-6013.
(30) (a) Grubbs, R. H.; Coates, G. W. Acc. Chem. Res. 1996, 29, 85-93. (b)
Margl, P.; Deng, L.; Ziegler, T. Organometallics 1998, 17, 933-946. (c)
Margl, P.; Deng, L.; Ziegler, T. J. Am. Chem. Soc. 1999, 121, 154-162.
(19) Ingleson, M. J.; Mahon, M. F.; Weller, A. S. Chem. Commun. 2004, 2398-
2399.
9
J. AM. CHEM. SOC. VOL. 129, NO. 17, 2007 5745