methyl group of toluene more active, while Au–Pd activates
O2, and benzaldehyde is formed quickly. Subsequent acid–
base interaction between benzaldehyde and the Lewis centre
inhibits further oxidation to benzoic acid, and makes the
carbonyl group in benzaldehyde more active to undergo an
aldol condensation reaction to produce benzyl benzoate.
This work was supported by the NSFC (20803024, 20936001,
21073065), FRFCU (2011ZG0009), NSF of Guangdong
(S2011020002397, 10351064101000000), and NCETU (NCET-
08-0203). RL gratefully acknowledges MICINN for the
concession of a Ramon y Cajal Contract (ref. RYC-2009-
04199) and projects CTQ2011-28954-C02-02 (MEC) and
P10-FQM-6711 (Consejeria de Ciencia e Innovacion, Junta de
Andalucia).
Scheme 1 Plausible mechanism for the selective aerobic oxidation of
toluene using Au–Pd/MIL-101.
promoting effects of existing Lewis acidity (in this case in the
MIL-101 support) on the selective oxidation of toluene.
In view of these findings, we have proposed a plausible
reaction mechanism for the production of benzyl benzoate
from toluene oxidation (Scheme 1). Lewis acids have been
reported to adsorb aromatic rings.6,14 Therefore, an inter-
action between the aromatic ring of toluene with the Lewis
acidic Cr sites of the MIL-101 support should be present in the
mechanism. Such an interaction may affect the electron
distribution of the methyl group. As a consequence, the carbon
atom of the methyl group is relatively electron-deficient and
should be more easily attacked by the activated oxygen species,
which is adsorbed on the surface of the Au–Pd nanoparticles,
probably in a superoxo-like form.15 This process might be
facilitated by the electron donation effects of the aryl rings of
the MIL-101 support.16 The transformation of benzyl alcohol
to benzaldehyde should be very fast on Au–Pd/MIL-101 under
the investigated conditions as indicated by the fact that mono-
metallic Au/MIL-101 can achieve a complete conversion of
benzyl alcohol within 1 h even under much milder conditions
(e.g., 1 atm of O2, 80 1C).16
An apparent difference in product distribution from
previous literature reports on Au–Pd alloy catalysts5c is the
complete absence of benzoic acid produced in toluene oxidation
experiments using Au–Pd/MIL-101 (Table 1). However, heating
benzaldehyde alone in O2 without the catalyst (Table S6, ESIw)
gave benzoic acid. These results indicate that further oxidation of
benzaldehyde to benzoic acid was effectively suppressed over
Au–Pd/MIL-101, which could also be related to the Lewis acidity
of the support, as it has been reported that Lewis basic CQO
groups can coordinate to Lewis acids (Scheme 1).17 Such an
interaction makes the carbon atom of the carbonyl group
in benzaldehyde highly electrophilic, thereby facilitating a
nucleophilic attack on the carbon atom by benzyl alcohol to
form the corresponding hemiacetal. In the final step, the
hemiacetal is further oxidized to benzyl benzoate.5c There are
some other possible pathways to form the ester (Scheme S1,
ESIw), nevertheless the control experiments seemed to rule out
these mechanisms (see the ESIw).
Notes and references
1 A. E. Shilov and G. B. Shul’pin, Chem. Rev., 1997, 97, 2879.
2 R. A. Sheldon and H. Bekkum, Fine chemicals through
heterogeneous catalysis, Wiley-VCH, Weinheim, 2001.
3 R. G. Bergman, Nature, 2007, 446, 391.
4 T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 2005,
105, 2329.
5 (a) X. Li, J. Xu, L. Zhou, F. Wang, J. Gao, C. Chen, J. Ning and
H. Ma, Catal. Lett., 2006, 110, 149; (b) K. Nomiya, K. Hashino,
Y. Nemoto and M. Watanabe, J. Mol. Catal. A: Chem., 2001,
176, 79; (c) L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, M. I. bin
Saiman, D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-
Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely and
G. J. Hutchings, Science, 2011, 331, 195; (d) A. P. Singh and
T. Selvam, J. Mol. Catal. A: Chem., 1996, 113, 489;
(e) A. Aguadero, H. Falcon, J. M. Campos-Martin, S. M.
Al-Zahrani, J. L. G. Fierro and J. A. Alonso, Angew. Chem., Int.
Ed., 2011, 50, 6557; (f) R. L. Brutchey, I. J. Drake, A. T. Bell and
T. D. Tilley, Chem. Commun., 2005, 3736; (g) G. Centi,
S. Perathoner and S. Tonini, Catal. Today, 2000, 61, 211;
(h) R. Raja, J. M. Thomas and V. Dreyer, Catal. Lett., 2006,
110, 179; (i) F. Konietzni, U. Kolb, U. Dingerdissen and
W. F. Maier, J. Catal., 1998, 176, 527; (j) F. Rajabi, J. H. Clark,
B. Karimi and D. J. Macquarrie, Org. Biomol. Chem., 2005, 3, 725.
6 H. L. Liu, Y. W. Li, R. Luque and H. F. Jiang, Adv. Synth. Catal.,
2011, 353, 3107.
7 B. Z. Yuan, Y. Y. Pan, Y. W. Li, B. L. Yin and H. F. Jiang, Angew.
Chem., Int. Ed., 2010, 49, 4054.
8 (a) D. Wang, A. Villa, F. Porta, D. Su and L. Prati, Chem.
Commun., 2006, 1956; (b) S. Hermans, A. Deffernez and
M. Devillers, Catal. Today, 2010, 157, 77.
9 A. M. Balu, A. Pineda, K. Yoshida, J. M. Campelo, P. L. Gai,
R. Luque and A. A. Romero, Chem. Commun., 2010, 46, 7825.
10 Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo,
J. Kim, A. Vimont, M. Daturi, C. Serre and G. Fe
Chem., Int. Ed., 2008, 47, 4144.
´
rey, Angew.
11 X. J. Gu, Z. H. Lu, H. L. Jiang, T. Akita and Q. Xu, J. Am. Chem.
Soc., 2011, 133, 11822.
12 J. M. Campelo, M. Jaraba, D. Luna, R. Luque, J. M. Marinas,
A. A. Romero, J. A. Navio and M. Macias, Chem. Mater., 2003,
15, 3352.
13 J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. A. Romero,
J. J. Calvino and M. P. Rodriguez-Luque, J. Catal., 2005, 230, 327.
14 P. Tarakeshwar, J. Y. Lee and K. S. Kim, J. Phys. Chem. A, 1998,
102, 2253.
15 (a) M. Okumura, M. Haruta, Y. Kitagawa and K. Yamaguchi,
Gold Bull., 2007, 40, 40; (b) J. D. Stiehl, T. S. Kim, S. M. McClure
and C. B. Mullins, J. Am. Chem. Soc., 2004, 126, 1606;
(c) A. Staykov, T. Kamachi, T. Ishihara and K. Yoshizawa,
J. Phys. Chem. C, 2008, 112, 19501.
On the basis of the above discussions, we can conclude that
the high activity and selectivity of Au–Pd/MIL-101 in toluene
oxidation can be correlated to an unprecendented and unique
double synergetic effect due to the presence of bimetallic
Au–Pd nanoparticles as well as the existing Lewis acidity of
the MIL-101 support. Lewis acid coordination makes the
16 H. L. Liu, Y. L. Liu, Y. W. Li, Z. Y. Tang and H. F. Jiang, J. Phys.
Chem. C, 2010, 114, 13362.
17 D. Cook, Can. J. Chem., 1963, 41, 522.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.