Organometallics
COMMUNICATION
coordination sphere of the central metal much more crowded and
the nonacoordinated samarium atom is relatively stable, which
results in the difficulty in coordination and insertion of ε-capro-
lactone to the initiator. When the Ti(IV) atom was coordinated by
the dangling pyrrolyl, amine, and imine nitrogen atoms of the
ligand of 1, the coordination environment of Sm(III) in 2 is less
crowded, which allows facile attack by ε-caprolactone.
In summary, toward our goal of synthesis of a heterobimetallic
complex and exploration of the cooperativity between the metal
centers of the heterometallic complex, we have prepared the bis-
ligand-chelated samarium complex 1, the heterobimetallic samarium-
(III)/titanium(IV) complex 2, and the titanium amido complex 3 by
selecting H3bptd as the ligand. The hydroamination of phenylace-
tylene catalyzed by 2 and 3 and the ring-opening polymerization
reaction of ε-caprolactone initiated by 1 and 2 were carried out. The
results of the catalytic reactions indicated that the titanium center and
the samarium center retained their individual reactivities, and the
heterobimetallic complex 2 showed higher activity in both hydro-
amination and polymerization reactions. This study could provide a
rational method for the design of a heterobimetallic system with
desirable properties.
(4) (a) Gorinchoy, V. V.; Zubareva, V. E.; Shova, S. G.; Szafranski,
V. N.; Lipkowski, J.; Stanica, N.; Simonov, Y. A.; Turta, C. I. Russ. J.
Coord. Chem. 2009, 35, 731. (b) Yang, X.-J.; Wang, Y.; Quillian, B.; Wei,
P.; Chen, Z.; Schleyer, P. v. R.; Robinson, G. H. Organometallics 2006,
25, 925. (c) Turta, C.; Shova, S.; Prodius, D.; Mereacre, V.; Gdaniec, M.;
Simonov, Y.; Lipkowski, J. Inorg. Chim. Acta 2004, 357, 4396. (d)
Bardaji, M.; Laguna, A. Eur. J. Inorg. Chem. 2003, 3069.
(5) (a) He, F.; Tong, M. L.; Chen, X. M. Inorg. Chem. 2005, 44, 8285.
(b) Wu, J. Y.; Yin, J. F.; Tseng, T. W.; Lu, K. L. Inorg. Chem. Commun.
2008, 11, 314. (c) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk,
M. L.; Pecoraro, V. L. Angew. Chem., Int. Ed. 2004, 43, 3912. (d) Zhao,
X. Q.; Zhao, B.; Ma, Y.; Shi, W.; Cheng, P.; Jiang, Z. H.; Liao, D. Z.; Yan,
S. P. Inorg. Chem. 2007, 46, 5832. (e) Yue, Q.; Yang, J.; Li, G. H.; Xu, W.;
Chen, J. S.; Wang, S. N. Inorg. Chem. 2005, 44, 5241.
(6) (a) Pevec, A.; Mrak, M.; Demsar, A.; Petricek, S.; Roesky, H. W.
Polyhedron 2003, 22, 575. (b) Getsova, M.; Todorovsky, D.; Enchev, V.;
Wawer, I. Monats. Chem. 2007, 138, 389. (c) Veith, M.; Mathur, S.;
Huch, V. Inorg. Chem. 1997, 36, 2391.
(7) (a) Westin, G.; Norrestam, R.; Nygren, M.; Wijk, M. J. Solid State
Chem. 1998, 135, 149. (b) Moustiakimov, M.; Kritikos, M.; Wesrin, G.
Acta Crystallogr. 1998, C54, 29. (c) Hubert-Pfalzgraf., L. G.; Abada, V.;
Vaissermann, J. Polyhedron 1999, 18, 3497. (d) Kessler, V. G.; Turova, N. Y.;
Panov, A .N.; Yanovski, A. I.; Pisarevsky, A. P.; Struchkov, Y. T. Polyhedron
1996, 15, 335. (e) Daniele, S.; Hubert-Pfalzgraf, L. G.; Daran, J. C.
Polyhedron 1994, 13, 927. (f) Kessler, V. G.; Hubert-Pfalzgraf, L. G.; Halut,
S.; Daran, J. C. J. Chem. Soc., Chem. Commun. 1994, 705. (g) Daniele, S.;
Hubert-Pfalzgraf, L. G.; Daran, J. C.; Halut, S. Polyhedron 1993, 12, 2091.
(8) Gainsford, G. J.; Kemmitt, T.; Milestone, N. B. Inorg. Chem.
1995, 34, 5244.
’ ASSOCIATED CONTENT
S
Supporting Information. Text, tables, figures, and CIF
b
files giving experimental procedures and characterization and
crystallographic details for 1-3. This material is available free of
(9) Laaziz, I.; Labart, A.; Julbe, A.; Guizard, C.; Cot, L. J. Solid State
Chem. 1992, 98, 393.
(10) (a) Zhou, F. Y.; Wu, J.; Lin, M. S.; Zhao, Y.; Wu, J.; Zhang, Y.;
Li, W.; Li, Y. H. Z. Anorg. Allg. Chem. 2010, 637, 117. (b) Xiang, L.;
Wang, Q. W.; Song, H. B.; Zi, G. F. Organometallics 2007, 26, 5323.
(11) (a) Swartz, D. L., II; Odom, A. L. Organometallics 2006,
25, 6125. (b) Odom, A. L. Dalton Trans. 2005, 225. (c) Li, Y.; Shi, Y.;
Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. (d) Cao, C.; Shi, Y.;
Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880. (e) Weitershaus, K.;
Ward, B. D.; Kubiak, R.; Muller, C.; Wadepohl, H.; Doye, S.; Gade, L. H.
Dalton Trans. 2009, 4586. (f) Zi, G.; Zhang, F.; Xiang, L.; Chen, Y.; Fang,
W.; Song, H. Dalton Trans. 2010, 39, 4048. (g) Zi, G. F.; Liu, X.; Xiang,
L.; Song, H. B. Organometallics 2009, 28, 1127.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: liyahong@suda.edu.cn.
’ ACKNOWLEDGMENT
We appreciate the financial support of the Natural Science
Foundation of China (Nos. 20872105 and 40673022), the
National Key Technology R&D Program in the 11th Five Year
Plan of China (No. 2006BAB09B07), and “Qinglan Project” of
Jiangsu Province (No. Bu109805).
(12) Kwiatkowski, E.; Kwiatkowski, M.; Olechnowicz, A.; Bandoli,
G. J. Crystallogr. Spectrosc. Res. 1993, 23, 473.
(13) Crystallographic data are as follows. General information: all
data sets were collected with Mo KR radiation (graphite monochroma-
tor, λ = 0.710 73 Å). 1: C28H35N10Sm, monoclinic, space group P21/c,
T = 293 (2) K, a = 9.390(1) Å, b = 23.924(2) Å, c = 13.7190(14) Å, β =
113.470(2)°, V = 2827.0(5) Å3, Z = 4, F000 = 1340; θ range 2.3-26.7°,
12 555 measured and 4713 independent reflections, final R index R1 =
0.0980. 2: C39.2H53N12O1.8SmTi, triclinic, space group P1, a = 10.580(2) Å,
b = 13.715(3) Å, c = 15.855(3) Å, R = 102.19(3)°, β = 101.24(3)°, γ =
95.28(3)°, V = 2184.2(8) Å3, Z = 2, F000 = 941, θ range 1.79-20.6°, 11119
measured and 4402 independent reflections, final R index 0.0515.
(14) For reviews on hydroamination, see:(a) Hartwig, J. F. Nature
2008, 455, 314. (b) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.;
Tada, M. Chem. Rev. 2008, 108, 3795. (c) Severin, R.; Doye, S. Chem. Soc.
Rev. 2007, 36, 1407. (d) Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
(15) (a) Yao, Y. M.; Xu, X. P.; Liu, B.; Zhang, Y.; Shen, Q.; Wong,
W. T. Inorg. Chem. 2005, 44, 5133. (b) Yao, Y. M.; Ma, M. T.; Xu, X. P.;
Liu, B.; Zhang, Y.; Shen, Q.; Wong, W. T. Organometallics 2005,
24, 4014. (c) Yamashita, M.; Takemoto, Y.; Ihara, E.; Yasuda, H.
Macromolecules 1996, 29, 1798.
’ REFERENCES
(1) (a) Yang, G.; Tsubaki, N.; Shamoto, J.; Yoneyama, Y.; Zhang., Y.
J. Am. Chem. Soc. 2010, 132, 8129. (b) Ammal, S. C.; Yoshikai, N.; Inada,
Y.; Nishibayashi, Y.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 9428.
(c) Chen, C. T.; Lin, Y. H.; Kuo, T. S. J. Am. Chem. Soc. 2008, 130, 12842.
(d) Sun, H. Y.; Huang, C. H.; Jin, X. L.; Xu, G. X. Polyhedron 1995, 14, 1201.
(e) Golodov, V. A.; Kashnikova, L. V. J. Mol. Catal. 1983, 19, 113.
(2) (a) Wheatley, N.; Kalck, P. Chem. Rev. 1999, 99, 3379. (b) Zanardi,
A.; Mata, J. A.; Peris, E. J. Am. Chem. Soc. 2009, 131, 14531. (c) Semeniuc,
R. F.; Thomas, J. R.; Jonathan, P. B.; Kraig, A. W.; Mark, D. S. Coord. Chem.
Rev. 1998, 178-180, 967. (d) Zhang, C.; Cao, Y.; Zhang, J.; Meng, S.;
Matsumoto, T.; Song, Y.; Ma, J.; Humphrey, M. G. Adv. Mater. 2008,
20, 1870. (e) Mishra, S.; Daniele, S.; Ledoux, G.; Jeanneau, E.; Joubert, M.-F.
Chem. Commun. 2010, 46, 3756. (f) Nippe, M.; Wang, J.; Bill, E.; Hope, H.;
Dalal, N. S.; Berry, J. F. J. Am. Chem. Soc. 2010, 132, 14261. (g) Singh, N.;
Prasad, A.; Sinha, R. K. Bull. Chem. Soc. Jpn. 2009, 82, 81.
(3) (a) Chibotaru, L. F.; Girerd, J. -J.; Blondin, G.; Glaser, T.;
Wieghardt, K. J. Am. Chem. Soc. 2003, 125, 12615. (b) Gehrmann, T.;
Fillol, J. L.; Wadepohl, H.; Gade, L. H. Organometallics 2010, 29, 28. (c)
Schley, M.; Fritzsche, S.; Lonnecke, P.; Hey-Hawkins, E. Dalton Trans.
2010, 39, 4090.
(16) O’Keefe, B. J.; Hillmayer, M. A.; Tolman, W. B. Dalton Trans.
2001, 2215.
(17) Kowalski, A.;Duda, A.;Penczek, S. Macromolecules 1998, 31, 2114.
1286
dx.doi.org/10.1021/om1010935 |Organometallics 2011, 30, 1283–1286