LETTER
Pd-Catalyzed Naphthylation of Acenaphthylene
899
of pentakisnaphthyl cyclopentadiene.6 The dehydrocy-
clization of 5 under moderate conditions stops after one
C–C bond formation; further cyclization steps would
cause a curvature, certainly requiring higher activation en-
ergies.
(40 mL) each. The organic layer was treated with an aq Na2S2O3
solution, washed with brine, dried with MgSO4 and concentrated in
vacuo. Flash chromatography of the residue (silica, PE–MTBE, 2:1)
gave 631 mg (78%) of 5 orange crystals with mp 268–270 °C.
Acenaphthyleno[1,2-i]picene (10) and 13H-Spiro-[acenaph-
then-1,13¢-dibenzo[a,i]fluorene] (11)
CuCl2 (269 mg, 2.00 mmol), AlCl3 (267 mg, 2.00 mmol), and the
disubstituted acenaphthylene (5, 404 mg 1.00 mmol) in CS2 (200
mL) were stirred under argon at r.t. for 5 min. Then, EtOH (200 mL)
was added, the resulting suspension was filtered and the residue was
extracted with EtOAc (100 mL). The combined solution was con-
centrated and the crude product mixture separated by flash chroma-
tography; TLC (silica, PE–MTBE 2:1); Rf = 0.12 (11), 0.10 (10),
0.00). First fraction: spirocycle 11 (89 mg 22%) as slightly yellow
crystals with mp 218 °C. 1H NMR (400 MHz, CDCl3): d = 4.19 (s,
2 H, H-2), 6.51 (d, J = 7.0 Hz, 1 H, H-8), 6.82 (d, J = 8.5 Hz, 2 H,
H-1¢), 6.99 (ddd, J = 1.5, 8.5 Hz, 2 H, H-2¢), 7.20 (dd, J = 7.0 Hz, 1
H, H-7), 7.27 (ddd, J = 1.5, 8.5 Hz, 2 H, H-3¢), 7.64 (d, J = 6.5 Hz,
1 H, H-3), 7.70 (d, J = 8.0 Hz, 1 H, H-6), 7.76 (dd, J = 7.0 Hz, 1 H,
H-4), 7.87 (d, J = 8.5 Hz, 2 H, H-4¢), 7.90 (d, J = 6.5 Hz, 1 H, H-5),
NMR spectroscopic data were recorded either at a Bruker DPX 200
(200 MHz) or at a Bruker DPX 400 (400 MHz). Mass spectrosco-
metric data were recorded on a VG Instruments Autospec mass
spectrometer.
Pd-Catalyzed Arylation of Acenaphthylene (2) with 1-Bromo-
naphthalene (3)
A mixture of acenaphthylene (2, 152 mg, 1.00 mmol), 1-bro-
monaphthalene (828 mg, 4.00 mmol), Cs2CO3 (1.30 g, 4.00 mmol),
Pd(OAc)2 (12 mg, 50 mmol), and tris-tert-butylphosphane (41 mg,
200 mmol) in anhyd DMF (10 mL) were stirred for 2 d at 140 °C un-
der argon in a screw-capped flask. The reaction mixture was diluted
with of EtOAc (90 mL) and acidified with PTSA monohydrate
(2.28 g, 12.0 mmol). After filtration through a pad of silica (4 g) the
organic phase was extracted three times with H2O (50 mL), dried
with Na2SO4 and the solvent was removed by rotatory evaporation.
TLC of the crude product: silica, PE–MTBE (2:1), Rf = 0.35 (4),
0.28 (1), 0.18 (5), 0.16 (6), 0.00. The products were separated by
flash chromatography and dried in vacuo (0.2 mbar, 50 °C); 1st frac-
tion: 1,1¢-binaphthyl 4 as colorless crystals (290 mg, 57% based on
the amount of aryl bromide) with mp 159 °C; 2nd fraction: the
monoarylated product 1 (117 mg, 42%) as yellow crystals with mp
92 °C; 3rd fraction: the bisarylated product 5 (77 mg, 19%) as or-
ange crystals with mp 268–270 °C.1H NMR (400 MHz, CDCl3,
25 °C, double set of signals): d = 7.09–7.13 (m, 1 H), 7.22–7.24 (m,
2 H), 7.30–7.39 (m, 4 H), 7.44–7.57 (m, 5 H), 7.70–7.76 (m, 3 H),
7.84 (d, J = 8.0 Hz, 1 H), 7.89 (d, J = 8.5 Hz, 1 H), 7.90 (d, J = 8.0
7.95 (d, J = 8.5 Hz, 2 H, H-5¢), 8.07 (d, J = 8.5 Hz, 2 H, H-6¢). 13
C
NMR (100 MHz, CDCl3): d = 43.88 (t, C-2), 63.34 (s, C-1), 118.45
(d, C-6¢), 119.60 (d, C-8), 121.03 (d, C-3), 122.95 (d, C-1¢), 123.72
(d, C-6), 123.77 (d, C-5), 124.99 (d, C-3¢), 126.80 (d, C-2¢), 128.50
(d, C-7), 128.61 (d, C-4), 129.14 (s, C-13b¢), 129.53 (d, C-5¢),
129.58 (d, C-4¢), 132.25 (s, C-5a), 133.99 (s, C-4a¢), 138.21 (s, C-
6a¢), 139.85 (s, C-8b), 143.51 (s, C-2a), 148.70 (s, C-13a¢), 149.54
(s, C-8a). UV/Vis (MeCN): l (log e) = 220 (4.10), 226 (4.11), 268
(4.24), 282 (3.90), 292 (3.74), 332 (3.42) nm. MS–FAB: m/z (%):
406 (6), 405 (36), 404 (100) [M+], 329 (5), 307 (16), 289 (9), 176
(18), 154 (74), 136 (54). Anal. Calcd for C32H20 (404.50): C, 95.02;
H, 4.98. Found: C, 94.76; H, 4.97. Second fraction: the angularly
fused aromatic hydrocarbon 10 (305 mg, 76%) as orange crystals
with mp 309 °C (lit.15: mp 306–310 °C).
Hz, 1 H), 8.07 (d, J = 8.5 Hz, 1 H), 8.10 (d, J = 8.0 Hz, 1 H). 13
C
NMR (100 MHz, CDCl3, 25 °C, double set of signals): d = 124.55
(d), 124.63 (d), 125.23 (d), 125.48 (d), 125.65 (d), 125.70 (d),
125.80 (d), 126.87 (d), 127.18 (d), 127.42 (d), 127.46 (d), 127.92
(d), 127.97 (d), 128.06 (d), 128.13 (d), 128.26 (d), 128.55 (d),
132.19 (s), 133.09 (s), 133.18 (s), 133.49 (s), 133.78 (s), 133.84 (s),
139.39 (s), 140.27 (s), 141.38 (s), 141.44 (s). UV/Vis (MeCN):
l (log e) = 220 (4.23), 308 (3.46) nm. MS–FAB: m/z (%) = 406 (7),
405 (36), 404 (100), 276 (4). Anal. Calcd for C32H20 (404.50): C,
95.02; H, 4.98. Found: C, 94.66; H, 5.04; 4th fraction: the 2,2¢-bis-
naphthyl derivative 6 (20 mg, 5%) as dark yellow crystals with mp
279 °C. 1H NMR (400 MHz, CDCl3, 25 °C): d = 6.78 (s, 1 H), 7.27
(d, J = 7.0 Hz, 1 H), 7.32–7.40 (m, 5 H), 7.44–7.52 (m, 4 H), 7.63–
7.69 (m, 2 H), 7.73 (d, J = 8.0 Hz, 1 H), 7.75 (d, J = 8.5 Hz, 2 H),
7.87 (s, 1 H), 7.94 (d, J = 8.5 Hz, 1 H), 7.96 (d, J = 8.5 Hz, 1 H),
8.00 (d, J = 8.5 Hz, 1 H). 13C NMR (100 MHz, CDCl3, 25 °C):
d = 124.01 (d), 124.23 (d), 125.74 (d), 125.93 (d), 126.04 (d),
126.29 (d), 127.04 (d), 127.17 (d), 127.33 (d), 127.45 (d), 127.63
(d), 127.66 (d), 127.83 (d), 128.03 (d), 128.06 (d), 128.10 (d),
128.23 (d), 128.30 (s), 128.39 (d), 128.61 (s), 128.83 (d), 130.66
(d), 131.92 (s), 132.16 (s), 133.02 (s), 133.35 (s), 133.49 (s), 139.27
(s), 139.60 (s), 140.23 (s), 141.24 (s), 141.55(s). UV/Vis (MeCN):
l (log e) = 220 (4.19), 224 (4.18), 296 (3.34), 328 (3.36) nm. MS–
FAB: m/z (%) = 406 (8), 405 (35), 404 (100), 276 (4). Anal. Calcd
for C32H20 (404.50): C, 95.02; H, 4.98. Found: C, 94.78; H, 4.53.
References and Notes
(1) Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B.
J. Am. Chem. Soc. 1991, 113, 7082.
(2) Stoddart, M. W.; Brownie, J. H.; Baird, M. C.; Schmider, H.
L. J. Organomet. Chem. 2005, 690, 3440.
(3) Sakurai, H.; Daiko, T.; Sakane, H.; Amaya, T.; Hirao, T. J.
Am. Chem. Soc. 2005, 127, 11580.
(4) Dyker, G. J. Org. Chem. 1993, 58, 234.
(5) Waldvogel, S. R.; Mirk, D. In Handbook of C–H
Transformations; Wiley-VCH: Weinheim, 2005, 251–261.
(6) Dyker, G.; Heiermann, J.; Miura, M.; Pivsa-Art, S.; Satoh,
T.; Nomura, M. Chem. Eur. J. 2000, 6, 3426.
(7) Dyker, G. Chem. Ber./Recl. 1997, 130, 1567.
(8) Gundermann, K. D. Z. Naturforsch., B: Chem. Sci. 1992, 47,
1764.
(9) X-ray data for 5 were collected on a Bruker AXS-SMART
1000 (Mo Ka radiation). The structure was solved by direct
methods and refined by full matrix least squares using
SHELXTL-97 All non-hydrogen atoms were refined using
anisotropic thermal parameters.
Crystal Data for 5
T = 213(2) K, C32H20, M = 404.48, monoclinic space group
P21/n, a = 12.190(5) Å, b = 10.104(4) Å, c = 17.237(7) Å,
b = 102.484(9)°, V = 2072.9(15) Å3, Z = 4, DC = 1.296 g/
cm3, m = 0.073 mm–1, 2.35° < Q < 25.15°, reflections
collected/unique 10788/3646 [Rint = 0.0489], data/restraints/
parameters 3646/0/289, GOF 1.021, final R[I > 2s(I)]
R1 = 0.0416, wR2 (all data) = 0.1082, residual density 0.134
and –0.190 e A–3.
Independent Synthesis of 1,2-Dinaphthalen-1-yl-acenaphthyl-
ene (5)
To a solution of NaI (1.50 g, 1.00 mmol) in anhyd MeCN (20 mL)
MeSiCl3 (1.49 g, 1.00 mmol) and 1,2-dinaphthalen-1-yl-acenaph-
thylen-1,2-diol (12,12 877 mg, 2.00 mmol) were successively added
under stirring. After 3 h at r.t. the reaction mixture was poured onto
crushed ice (50 g), followed by threefold extraction with MTBE
Synlett 2007, No. 6, 897–900 © Thieme Stuttgart · New York