T.W. Lyons, M.S. Sanford / Tetrahedron 65 (2009) 3211–3221
3221
9. For examples, see: (a) Meyer, F. E.; Parsons, P. J.; Meijere, A. J. Org. Chem. 1991,
56, 6487; (b) Owczarczyk, Z.; Lamaty, F.; Vawter, E. J.; Negishi, E. J. Am. Chem.
Soc. 1992, 114, 10091; (c) Grigg, R.; Dorrity, M. J.; Malone, J. F. Tetrahedron Lett.
1990, 31, 1343; (d) Brown, A.; Grigg, R.; Ravishankar, R.; Thornton-Pett, M.
Tetrahedron Lett. 1994, 2753; (e) Grigg, R.; Sridharan, V. Tetrahedron Lett. 1992,
33, 7965; (f) Grigg, R.; Rasul, R.; Redpath, J.; Wilson, D. Tetrahedron Lett. 1996,
4.4.22. (Z)-1-(4-(Acetoxy(biphenyl-4-yl)methylene)-5-
oxotetrahydrofuran-3-yl)ethyl acetate (39c)
Substrate 39c (0.790 g, 2.86 mmol, 1 equiv), PhI(OAc)2 (7.362 g,
22.9 mmol, 8 equiv), and Pd(OAc)2 (32.1 mg, 5 mol %) were dis-
solved in AcOH (18 mL) and heated at 80 ꢀC for 2 h. Product 39c was
purified by gradient column chromatography (gradient¼80% hex-
anes/20% EtOAc to 50% hexanes/50% EtOAc) and isolated as a white
solid (mp¼150.0–151.1 ꢀC, Rf¼0.22 in 70% hexanes/30% EtOAc).
Analytically pure material was obtained from further purification
´
`
˜
37, 4609; (g) Marco-Martınez, J.; Lopez-Carrillo, V.; Bunuel, E.; Simancas, R.;
Ca´rdenas, D. J. J. Am. Chem. Soc. 2007, 129, 1874.
10. (a) Lu, X.; Zhu, G.; Wang, Z. Synlett 1998, 115; (b) Wang, Z.; Zhang, Z.; Lu, X.
Organometallics 2000, 19, 775; (c) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70,
4059; (d) Zhang, Q.; Lu, X.; Han, X. J. Org. Chem. 2001, 66, 7676; (e) Zhang, Q.;
Xu, W.; Lu, X. J. Org. Chem. 2005, 70, 1505.
by HPLC (85% hexanes/15% EtOAc, 24 mL/min, Waters
m-porasil
11. For a preliminary account of this work, see: (a) Welbes, L. L.; Lyons, T. W.;
Cychosz, K. A.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 5836. See also: (b)
Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129, 4906; (c) Desai, L.;
Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46, 5737; (d) Kalyani, D.; Sanford, M.
S. J. Am. Chem. Soc. 2008, 130, 2150; (e) Desai, L.; Hull, K. L.; Sanford, M. S. J. Am.
Chem. Soc. 2004, 126, 9542.
12. For examples, see: (a) Mun˜iz, K.; Ho¨velmann, C. H.; Streuff, J. J. Am. Chem. Soc.
2008, 130, 763; (b) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179; (c)
Ba¨ckvall, J. E.; Bjoerkman, E. E. J. Org. Chem. 1980, 45, 2893; (d) Henry, P. M.;
Davies, M.; Gerguson, G.; Phillips, S.; Restivo, R. J. Chem. Soc., Chem. Commun.
1974, 112; (e) Ba¨ckvall, J. E. Tetrahedron Lett. 1978, 19, 163; (f) Ba¨ckvall, J. E. Acc.
Chem. Res. 1983, 16, 335.
19.1 mm). The isolated yield was not determined due to loss during
purification. However, HPLC analysis of the crude reaction mixture
showed that 39c was formed in 8% yield. 1H NMR (500 MHz,
CDCl3):
d
7.67 (d, J¼8.0 Hz, 2H), 7.61 (multiple peaks, 4H), 7.45 (t,
7.0 Hz, 2H), 7.37 (t, 7.0 Hz, 1H), 5.31 (m, 1H), 4.45 (dd, J¼2.0, 9.5 Hz,
1H), 4.31 (dd, J¼8.0, 10.0 Hz, 1H), 3.68 (m, 1H), 2.35 (s, 3H), 2.08 (s,
3H), 1.27 (d, J¼6.5 Hz, 3H). 13C {1H} NMR (100.6 MHz, CDCl3):
d
170.3, 168.2, 143.7, 140.2, 130.5, 129.5, 128.8, 127.9, 127.2, 126.7,
115.1, 69.6, 65.3, 42.9, 21.2, 20.9, 14.5. Two peaks coincidentally
overlap. HRMS (EI): [M]þ calcd for C23H22O6: 394.1416; found:
13. For examples, see: (a) Tichenor, M. S.; Trzupek, J. D.; Kastrinsky, D. B.; Shiga, F.;
Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 15683; (b) Boger, D. L.;
Garbaccio, R. M. J. Org. Chem. 1999, 64, 8350.
394.1417. IR (Nujol mull): 1776, 1758, 1732 cmꢃ1
.
14. Zhang, Q.; Lu, X. J. Am. Chem. Soc. 2000, 122, 7604.
15. (a) Heck, R. F. Org. React. 1982, 27, 345; (b) Larhed, M.; Hallberg, A. In Handbook
of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-In-
terscience: New York, NY, 2002; (c) Soderberg, B. C. In Comprehensive Organ-
ometallic Chemistry II; Hegedus, L. S., Abel, E. W., Stone, F. G. A., Wilkinson, G.,
Eds.; Pergamon: Oxford, 1995; Vol. 12, pp 259–287.
16. For examples, see: (a) Desai, L.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8,
1141; (b) Yang, D. Acc. Chem. Res. 2004, 37, 497; (c) Muehlhofer, M.; Strassner, T.;
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 124, 3824; (d) Reddy, B. V. S.;
Reddy, L. F.; Corey, E. J. Org. Lett. 2006, 8, 3391; (e) Tang, S.; Peng, P.; Pi, S. F.;
Liang, Y.; Wang, N. X.; Li, J. H. Org. Lett. 2008, 10, 1179; (f) Wang, G. W.; Yuan, T.
T.; Wu, X. L. J. Org. Chem. 2008, 73, 4717.
Acknowledgements
This work was supported by NIH NIGMS (RO1 GM073836). We
also gratefully acknowledge the Camille and Henry Dreyfus Foun-
dation and the Alfred P. Sloan Foundation as well as Abbott, Amgen,
AstraZeneca, Boehringer-Ingelheim, Bristol Myers Squibb, Eli Lilly,
GlaxoSmithKline, Merck Research Laboratories, and Roche for
funding. Additionally, we thank Jeff Kampf for X-ray crystallography
and Leilani Welbes for preliminary studies and helpful discussions.
17. The olefin geometry of these side products could not be definitively determined
using NOE analysis.
18. (a) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc. 2005, 127, 7690; (b) Li,
Y.; Song, D.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2962.
19. Dick, A. R.; Kampf, J.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790.
20. Reductive elimination from a similar intermediate has been reported to pro-
ceed with inversion, as determined by coupling constant analysis (see Ref. 11b).
21. The olefin geometry of 39c could not be definitively determined in solution via
NOE analysis; however, interestingly, the X-ray structure shows a geometry
consistent with initial cis-acetoxypalladation of the alkyne. While the literature
suggests that trans-acetoxypalladation should predominate under our standard
reaction conditions, early studies of alkyne halo- and acetoxypalladation have
shown that mixtures of trans and cis products can be formed. For examples,
see: (a) Lu, X.; Zhu, G.; Ma, S. Tetrahedron Lett. 1992, 33, 7205; (b) Zhu, G.; Ma,
S.; Lu, X.; Huang, Q. J. Chem. Soc., Chem. Commun. 1995, 271; (d) Lambert, C.;
Utimoto, K.; Nazaki, H. Tetrahedron Lett. 1984, 25, 5323; (e) Yanagihara, N.;
Lambert, C.; Iritani, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 2753;
(f) Ba¨ckvall, J.-E.; Nilsson, Y. I. M.; Gatti, R. G. P. Organometallics 1995, 14, 4242.
Further investigations are underway to understand the factors controlling cis
versus trans acetoxypalladation as well as the effect that this has on the out-
come of these cyclopropane-forming transformations.
22. Crystallographic data (excluding structure factors) for the structures in this
paper have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication number CCDC 704193. Copies of the data can be
obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2
23. Kinetics studies have shown that these reactions are zero order in oxidant.
Therefore, the change in rate with electronically differentiated alkenes does not
provide information about the cyclopropane-forming step of this reaction.
References and notes
1. (a) Trofast, J.; Wickberg, B. Tetrahedron 1977, 33, 875; (b) Koft, E. R.; Smith, A. B.,
III. J. Am. Chem. Soc. 1982, 104, 2659; (c) Brown, R. F. C.; Teo, P. Y. T. Tetrahedron
Lett. 1984, 25, 5585.
2. (a) Ichimura, M.; Ogawa, T.; Katsumata, S.; Takahashi, K.; Takahashi, I.; Nakano,
H. J. Antibiot. 1991, 44, 1045; (b) Boger, D. L.; Garbaccio, R. M.; Jin, Q. J. Org. Chem.
1997, 62, 8875.
3. Kirkland, T. A.; Colucci, J.; Geraci, L. S.; Marx, M. A.; Schneider, M.; Kaelin, D. E.,
Jr.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 12432.
4. (a) Swain, N. A.; Brown, R. C. D.; Bruton, G. J. Org. Chem. 2004, 69, 122; (b) Ok, T.;
Jeon, A.; Lee, J.; Lim, J. H.; Hong, C. S.; Lee, H. S. J. Org. Chem. 2007, 72, 7390; (c)
Clive, D. L. J.; Liu, D. J. Org. Chem. 2008, 73, 3078; (d) Chavan, S. P.; Pasapathy, K.;
Shivasankar, K. Synth. Commun. 2004, 34, 397.
5. (a) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem. Soc. 2004,126, 8654;
(b) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mour-
ie`sDhimane, A.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004,126, 8656; (c)
Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.
6. For reviews on cycloisomerizations, see: (a) Zhang, L.; Sun, J.; Kozmin, S. A. Adv.
Synth. Catal. 2006, 348, 2271; (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev.
2002, 102, 813; (c) Trost, B. M.; Krische, M. J. Synlett 1998, 1.
7. Intramolecular cyclization of diazo compounds has also frequently been used to
access bicyclo[3.1.0] and [4.1.0] ring systems. For examples, see: (a) Doyle, M. P.;
Pieters, R. J. J. Am. Chem. Soc. 1991, 113, 1423; (b) Doyle, M. P.; Austin, R. E.;
Bailey, A. S.; Dwyer, M. P.; Dyatkin, A. B.; Kalinin, A. V.; Kwan, M. Y.; Liras, S.;
Oalmann, C. J.; Pieters, R. J.; Protopopova, M. N.; Raab, C. E.; Roos, G. H. P.; Zhou,
Q.; Martin, S. F. J. Am. Chem. Soc. 1995, 117, 5763; (c) Doyle, M. P.; Peterson, C. S.;
Parker, D. L., Jr. Angew. Chem., Int. Ed. 1996, 35, 1334.
24. In contrast, significant decomposition of the alkene products (
served under these conditions. Many small peaks were observed in the GC and
HPLC traces of these reactions after 8 h, suggesting that -H decomposes to
b-H) was ob-
b
a mixture of unidentified minor products. We believe that this accounts for the
poor mass balance in many of these reactions.
8. Bo¨hmer, J.; Grigg, R.; Marchbank, J. D. Chem. Commun. 2002, 768.