Angewandte
Chemie
Scheme 2. Reagents and conditions: a) TsN3 (1.1 equiv), Et3N (1.1 equiv), CuI (2 mol%), tBuOH/H2O (2:1), 258C, 2 h; b) TBDMSCl (1.1 equiv),
imidazole (2.0 equiv), CH2Cl2, 258C, 5 h; c) MeI (4.0 equiv), K2CO3 (2.0 equiv), DMF, 258C, 4 h; d) DIBAL (1.1 equiv), CH2Cl2, À788C, 1.5 h;
e) nBuLi (1.5 equiv), BnSH (1.5 equiv), AlMe3 (1.5 equiv), Et2O, 08C, 1 h; f) NaOEt (1.1 equiv), EtOH, 258C, 2 h; g) TMS-acetylene (4.0 equiv),
nBuLi (4.1 equiv), BF3·Et2O (4.0 equiv), THF, À788C, 2 h; h) HF-Pyridine, CH3CN, 258C, 3 h; i) DIBAL (1.1 equiv), THF, À788C, 2 h; j) K2CO3
(2.0 equiv), MeOH, 258C, 2 h; k) CuSO4 (2.0 equiv), PPTS (0.1 equiv), acetone, 258C, 12 h; l) TsN3 (1.1 equiv), Et3N (1.1 equiv), CuI (2 mol%),
H2O, 258C, 1 h; m) 1n HCl/THF (1:1), 258C, 3 h. Bn=benzyl, DIBAL=diisobutylaluminum hydride, PPTS=pyridinium p-toluenesulfonate,
TBDMS=tert-butyldimethylsilyl, TMS=trimethylsilyl.
[3] For instructive aspects of using carboxylic acid derivatives as
aldol donors, see:a) A. Abiko, Acc. Chem. Res. 2004, 37, 387;
b) S. E. Denmark, J. R. Heemstra, G. L. Beutner, Angew. Chem.
2005, 117, 4760; Angew. Chem. Int. Ed. 2005, 44, 4682.
[4] a) I. Bae, H. Han, S. Chang, J. Am. Chem. Soc. 2005, 127, 2038;
b) E. J. Yoo, I. Bae, S. H. Cho, H. Han, S. Chang, Org. Lett. 2006,
8, 1347; c) S. Chang, M. Lee, D. Y. Jung, E. J. Yoo, S. H. Cho,
S. K. Han, J. Am. Chem. Soc. 2006, 128, 12366.
[5] a) M. Whitting, V. V. Fokin, Angew. Chem. 2006, 118, 3229;
Angew. Chem. Int. Ed. 2006, 45, 3157; b) S.-L. Cui, X.-F. Lin, Y.-
G. Wang, Org. Lett. 2006, 8, 4517.
[6] a) S. H. Cho, E. J. Yoo, I. Bae, S. Chang, J. Am. Chem. Soc. 2005,
127, 16046; b) M. P. Cassidy, J. Raushel, V. V. Fokin, Angew.
Chem. 2006, 118, 3226; Angew. Chem. Int. Ed. 2006, 45, 3154.
[7] Recently, an elegant example of catalytic aldol reactions of
amides with aldehydes was reported:S. Saito, S. Kobayashi, J.
Am. Chem. Soc. 2006, 128, 8704.
transesterification under basic conditions resulted in ester 7
with good yields in all cases.[18] The b-O-silyl ester derivative
(7) was readily converted into the propargyl 1,3-diol 8 with
high diastereoselectivity (d.r. 93:7) in 57% yield in four
convenient steps.[19] The relative stereochemistry of the newly
generated hydroxy group in 8 was unambiguously established
by an NOE experiment after conversion to its ketal deriva-
tive.[10]
The second operation of the catalytic hydrative amide
protocol was also successfully carried out with a ketal
derivative of 8 in water, and the subsequent deketalization
afforded the b,d-dihydroxy sulfonamide 9 in 79% yield (three
steps) without racemization. It should be mentioned that this
approach can be potentially utilized as an iterative aldol
surrogate to synthesize polyhydroxy amides (e.g. 10) when the
same procedures are repeated.
[8] Trost and co-workers reported an alkyne hydrosilylation–
In summary, we have shown that Cu-catalyzed hydrative
amide synthesis is significantly accelerated in aqueous solvent
systems. Under environmentally friendly conditions and with
N2 released as the single side product, this reaction can be
applied to a wide range of propargyl alcohols and sulfonyl
azides as highly viable substrates, and b-hydroxy N-sulfona-
mides are obtained in good to excellent yields. It was also
demonstrated that the method can be applied readily in an
iterative manner to produce polyhydroxy amides; in this way
it serves as a new practical aldol-surrogate strategy.
oxidation strategy as
a selective aldol-surrogate reaction:
a) B. M. Trost, Z. T. Ball, T. Jöge, Angew. Chem. 2003, 115,
3537; Angew. Chem. Int. Ed. 2003, 42, 3415; b) B. M. Trost, Z. T.
Ball, K. M. Laemmerhold, J. Am. Chem. Soc. 2005, 127, 10028.
[9] a) C.-J. Li, Chem. Rev. 1993, 93, 2023; b) S. Kobayashi, K.
Manabe, Acc. Chem. Res. 2002, 35, 209; c) S. Narayan, J.
Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless,
Angew. Chem. 2005, 117, 3219; Angew. Chem. Int. Ed. 2005, 44,
3275; d) C.-J. Li, Chem. Rev. 2005, 105, 3095.
[10] For details, see the Supporting Information.
[11] For a recent example of using acetylene gas in organic trans-
formations, see:M. Nakamura, K. Endo, E, Nakamura, Org.
Lett. 2005, 7, 3279.
Received:October 25, 2006
[12] For recent examples of aqueous aldol reactions, see:a) T.
Hamada, K. Manabe, S. Ishikawa, S. Nagayama, M. Shiro, S.
Kobayashi, J. Am. Chem. Soc. 2003, 125, 2989; b) C. J. Rogers,
T. J. Dickerson, K. D. Janda, Tetrahedron 2006, 62, 352; c) Y.
Hayashi, S. Aratake, T. Okano, J. Takahashi, T. Sumiya, M. Shoji,
Angew. Chem. 2006, 118, 5653; Angew. Chem. Int. Ed. 2006, 45,
5527.
[13] In a recent report Fokin et al. included one tertiary propargyl
alcohol as a viable substrate for the formation of amide (68%)
using [Cu(CH3CN)4]PF6 catalyst in the presence of sodium
ascorbate, sodium bicarbonate, and a ligating tristriazolyl amine
Published online:January 19, 2007
Keywords: b-hydroxy amides · alkynes · azides · copper · water
.
[1] a) E. M. Carreira in Catalytic Asymmetric Synthesis, 2nd ed.
(Ed.:I. Ojima), Wiley-VCH, New York, 2000; b) Modern Aldol
Reactions (Ed.:R. Mahrwald), Wiley-VCH, Weinheim, 2004.
[2] a) M. Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187; b) T.
Mukaiyama, Angew. Chem. 2004, 116, 5708; Angew. Chem. Int.
Ed. 2004, 43, 5590.
Angew. Chem. Int. Ed. 2007, 46, 1897 –1900
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1899