C O M M U N I C A T I O N S
Application of the bulky phosphine was examined. The ligand
8b-S proved to serve as a ligand for the amination of aryl chloride
with morpholine (eq 5).12 The bulky phosphine ligands prepared
by this method will find many applications in organic synthe-
sis.
Acknowledgment. This work was supported by Grants-in-Aid
for Scientific Research from MEXT and JSPS.
moderate yield with concomitant formation of 4b (eq 3). The
reaction of internal diyne 1g with dicyclohexylphosphine sulfide
7b was successful to yield highly crowded 8b in high yield (eq 4).
The products, phosphine sulfides, were subjected to radical
desulfidation conditions11 to provide the corresponding trivalent
phosphines in high yields (Scheme 1). The desulfidation reactions
of these bulky phosphines were clean and high-yielding. Except
for triisopropyl-substituted 3hc-S, the phosphines obtained were
stable under air. We could perform the purification of the trivalent
phosphines on silica gel without any special care. The present
method offers a novel access to bulky phosphine ligands.
Supporting Information Available: Experimental details and
characterization data for new compounds (PDF). This material is
References
(1) (a) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004. (b) Tsuji,
J. Palladium Reagents and Catalysts; Wiley-VCH: Weinheim, Germany,
2004. (c) Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; John Wiley & Sons: New York, 2002. (d) Miura, M.
Angew. Chem., Int. Ed. 2004, 43, 2201-2203. (e) Christmann, U.; Vilar,
R. Angew. Chem., Int. Ed. 2005, 44, 366-374. (f) Buchwald, S. L.;
Mauger, C.; Mignani, G.; Scholz, U. AdV. Synth. Catal. 2006, 348, 23-
39. (g) Schlummer, B.; Scholz, U. AdV. Synth. Catal. 2004, 346, 1599-
1626.
(2) Recent examples: (a) Tomori, H.; Fox, J. M.; Buchwald, S. L. J. Org.
Chem. 2000, 65, 5334-5341. (b) Keller, J.; Schlierf, C.; Nolte, C.; Mayer,
P.; Straub, B. F. Synthesis 2006, 354-365.
(3) (a) Hayashi, T. Acc. Chem. Res. 2000, 33, 354-362. (b) Kocovsky, P.;
Vyskocil, S.; Smrcina, M. Chem. ReV. 2003, 103, 3213-3245. (c) Murata,
M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397-7403. (d) Allen, D.
V.; Venkataraman, D. J. Org. Chem. 2003, 68, 4590-4593. (e) Korff,
C.; Helmchen, G. Chem. Commun. 2004, 530-531 and refs cited
therein.
(4) (a) Kondoh, A.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2007, 129,
4099-4104. (b) Kondoh, A.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007,
9, 1383-1385.
(5) (a) Fujiwara, M.; Ojima, I. In Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005;
Chapter 7. (b) Saito, S.; Yamamoto, Y. Chem. ReV. 2000, 100, 2901-
2915. (c) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005,
4741-4767. (d) Chopade, P. R.; Louie, J. AdV. Synth. Catal. 2006, 348,
2307-2327.
(6) Rhodium-catalyzed cycloaddition reactions of N-(1-alkynyl)amides have
been reported: (a) Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem.
Soc. 2006, 128, 4586-4587. (b) Tracey, M. R.; Oppenheimer, J.; Hsung,
R. P. J. Org. Chem. 2006, 71, 8629-8632. (c) Witulski, B.; Alayrac, C.
Angew. Chem., Int. Ed. 2002, 41, 3281-3284. (d) Witulski, B.; Stengel,
T. Angew. Chem., Int. Ed. 1999, 38, 2426-2430.
Scheme 1. Desulfidation with TTMSS
(7) Tanaka et al. have reported asymmetric synthesis of tetra-ortho-substituted
axially chiral biaryl phosphorus compounds by using rhodium-catalyzed
formal [2 + 2 + 2] cycloaddition: Nishida, G.; Noguchi, K.; Hirano,
M.; Tanaka, K. Angew. Chem., Int. Ed. 2007, early view, DOI: 10.1002/
anie.200700064.
(8) (a) Lautens, M.; Klute, W.; Tam, W. Chem. ReV. 1996, 96, 49-92. (b)
Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. ReV. 1996,
96, 635-662. (c) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.;
Hirano, M. Chem.sEur. J. 1999, 11, 1145-1156 and refs cited
therein.
(9) We performed the reaction of 2,6-diphenylphenyllithium with chlorodiphe-
nylphosphine. However, the corresponding bulky phosphine, diphenyl-
(2,6-diphenylphenyl)phosphine, was obtained in only 22% yield, along
with a significant amount of m-terphenyl. See Supporting Informa-
tion.
(10) When (R)-tol-BINAP was used as a ligand, a 55% ee of 3hg was obtained
in 72% yield.
(11) Romeo, R.; Wozniak, L. A.; Chatgilialoglu, C. Tetrahedron Lett. 2000,
41, 9899-9902.
(12) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
120, 9722-9723. (b) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int.
Ed. 1999, 38, 2413-2416.
JA071622O
9
J. AM. CHEM. SOC. VOL. 129, NO. 22, 2007 6997