Stannyl Complexes of Mn and Re
Organometallics, Vol. 26, No. 11, 2007 2919
otherwise noted. 1H and 13C spectra are referred to internal
tetramethylsilane; 31P{1H} chemical shifts are reported with respect
to 85% H3PO4 and those of 119Sn with respect to Sn(CH3)4, and in
both cases downfield shifts are considered positive. COSY, HMQC,
and HMBC NMR experiments were performed with standard
programs. The SwaN-MR and iNMR software packages9 were used
to treat NMR data. The conductivities of 10-3 mol dm-3 solutions
of the complexes in CH3NO2 at 25 °C were measured on a
Radiometer CDM 83 instrument. Elemental analyses were deter-
mined by the Microanalytical Laboratory of the Dipartimento di
Scienze Farmaceutiche, University of Padova, Padova, Italy.
Synthesis of Complexes. The pentacarbonyl complexes MnX-
(CO)5 and ReX(CO)5 (X ) Cl, Br) and hydride complexes
ReH(CO)nP5-n (n ) 2, 3; P ) PPh(OEt)2, P(OEt)3) were prepared
following previously reported methods.5c,10
testing both whether tin trihydride complexes can be prepared
for other metals and how the properties of the stannyl group
are influenced by the metal fragment. We focused our attention
on d6 manganese(I) and rhenium(I) central metals;5 these are
isoelectronic with Os(II), and their tin chemistry is much less
developed than that of other d6 complexes.1,6,7
The results of these studies, which include the preparation
and reactivity of the first tin trihydride complexes of manganese
and rhenium, are reported here.
Experimental Section
General Comments. All synthetic work was carried out under
an appropriate atmosphere (Ar, N2) using standard Schlenk
techniques or an inert-atmosphere drybox. Once isolated, the
complexes were found to be relatively stable in air but were stored
under nitrogen at -25 °C. All solvents were dried over appropriate
drying agents, degassed on a vacuum line, and distilled into vacuum-
tight storage flasks. Mn2(CO)10 and Re2(CO)10 were Pressure
Chemical Co. (USA) products, used as received. The phosphite
PPh(OEt)2 was prepared by the method of Rabinowitz and Pellon.8
The reagents MgBrMe (3 M solution in diethyl ether) and MgBr-
(CtCH) (2.5 M solution in diethyl ether) were Aldrich products,
used as received. The lithium acetylide Li+CtCR- (R ) p-tolyl)
was prepared by reacting a slight excess of the appropriate acetylene
(35 mmol) with lithium (30 mmol, 0.21 g) in 20 mL of tetrahy-
drofuran (thf). Other reagents were purchased from commercial
sources in the highest available purity and used as received. Infrared
spectra were recorded on a Nicolet Magna 750 or Perkin-Elmer
Spectrum-One FT-IR spectrophotometer. NMR spectra (1H, 31P,
13C, 119Sn) were obtained on an AC200 or AVANCE 300 Bruker
spectrometer at temperatures between -90 and +30 °C, unless
MnX(CO)3[PPh(OEt)2]2 (X ) Cl, Br). An excess of PPh(OEt)2
(14.6 mmol, 2.9 mL) was added to a solution of the appropriate
MnX(CO)5 complex (5.82 mmol) in toluene (X ) Cl) or benzene
(X ) Br), and the reaction mixture was refluxed for 2 h. The solvent
was removed under reduced pressure to give a brown oil, which
was triturated with ethanol (5 mL). A yellow (X ) Cl) or orange
(X ) Br) solid slowly separated out from the resulting solution,
which was isolated by filtration and crystallized from CH2Cl2 and
ethanol; yield g90%.
MnCl(CO)3[PPh(OEt)2]2. IR (KBr; cm-1): νCO 2045 (w), 1981,
1
1910 (s). H NMR (CD2Cl2, 25 °C; δ): 7.70, 7.43 (m, 10 H, Ph),
4.20, 3.98 (m, 8 H, CH2), 1.33 (t, 12 H, CH3). 31P{1H} NMR (CD2-
Cl2, 25 °C; δ): 183.1 (s, br). Anal. Calcd for C23H30ClMnO7P2:
C, 48.40; H, 5.30; Cl, 6.21. Found: C, 48.52; H, 5.25; Cl, 6.43.
MnBr(CO)3[PPh(OEt)2]2. IR (KBr; cm-1): νCO 2051 (w), 1976,
1
1906 (s). H NMR (CD2Cl2, 25 °C; δ): 7.70, 7.46 (m, 10 H, Ph),
4.19, 3.95 (m, 8 H, CH2), 1.34 (t, 12 H, CH3). 31P{1H} NMR (CD2-
Cl2, -70 °C; δ): A2, 185.2 (s). Anal. Calcd for C23H30BrMnO7P2:
C, 44.90; H, 4.91; Br, 12.99. Found: C, 44.77; H, 4.93; Br, 12.80.
ReX(CO)3[PPh(OEt)2]2 (X ) Cl, Br). These complexes were
prepared like the related MnX(CO)3[PPh(OEt)2]2 complexes, using
a reaction time of 2.5 h; yield g80%.
(5) For our previous papers on Mn and Re complexes stabilized by
phosphite ligands, see: (a) Albertin, G.; Antoniutti, S.; Bacchi, A.;
Bordignon, E.; Busatto, F.; Pelizzi, G. Inorg. Chem. 1997, 36, 1296-1305.
(b) Albertin, G.; Antoniutti, S.; Bettiol, M.; Bordignon, E.; Busatto, F.
Organometallics 1997, 16, 4959-4969. (c) Albertin, G.; Antoniutti, S.;
Garcia-Fonta´n, S.; Carballo, R.; Padoan, F. J. Chem. Soc., Dalton Trans.
1998, 2071-2081. (d) Albertin, G.; Antoniutti, S.; Bacchi, A.; Ballico, G.
B.; Bordignon, E.; Pelizzi, G.; Ranieri, M.; Ugo, P. Inorg. Chem. 2000,
39, 3265-3279. (e) Albertin, G.; Antoniutti, S.; Bacchi, A.; Bordignon,
E.; Miani, F.; Pelizzi, G. Inorg. Chem. 2000, 39, 3283-3293. (f) Albertin,
G.; Antoniutti, S.; Bordignon, E.; Visentin, E. Inorg. Chem. 2001, 40, 5465-
5467. (g) Albertin, G.; Antoniutti, S.; Bacchi, A.; Bordignon, E.; Giorgi,
M. T.; Pelizzi, G. Angew. Chem., Int. Ed. 2002, 41, 2192-2194. (h) Albertin,
G.; Antoniutti, S.; Bravo, J.; Castro, J.; Garcia-Fonta´n, S.; Mar´ın, M. C.;
Noe`, M. Eur. J. Inorg. Chem. 2006, 3451-3462.
(6) For manganese tin complexes, see: (a) Thompson, J. A. J.; Graham,
W. A. G. Inorg. Chem. 1967, 10, 1875-1879. (b) Clark, H. C.; Hunter, B.
K. J. Organomet. Chem. 1971, 31, 227-232. (c) Collman, J. P.; Hoyano,
J. K.; Murphy, D. W. J. Am. Chem. Soc. 1973, 95, 3424-3425. (d) Spek,
A. L.; Bos, K. D.; Bulten, E. J.; Noltes, J. G. Inorg. Chem. 1976, 15, 339-
345. (e) Chipperfield, J. R.; Hayter, A. C.; Webster, D. E. J. Chem. Soc.,
Dalton Trans. 1977, 485-490. (f) McCullen, S. B.; Brown, T. L. J. Am.
Chem. Soc. 1982, 104, 7496-7500. (g) Foster, S. P.; Mackay, K. M. J.
Organomet. Chem. 1983, 247, 21-26. (h) Bullock, J. P.; Palazzotto, M.
C.; Mann, K. R. Inorg. Chem. 1990, 29, 4413-4421. (i) Sullivan, R. J.;
Brown, T. L. J. Am. Chem. Soc. 1991, 113, 9155-9161. (j) Utz, T. L.;
Leach, P. A.; Geib, S. J.; Cooper, N. J. Chem. Commun. 1997, 847-848.
(k) Chen, Y.-S.; Ellis, J. E. Inorg. Chim. Acta 2000, 300-302, 675-682.
(l) Christendat, D.; Wharf, I.; Lebuis, A.-M.; Butler, I. S.; Gilson, D. F. G.
Inorg. Chim. Acta 2002, 329, 36-44.
ReCl(CO)3[PPh(OEt)2]2. IR (KBr; cm-1): νCO 2030 (m), 1974,
1
1895 (s). H NMR (CD2Cl2, 25 °C; δ): 7.70, 7.46 (m, 10 H, Ph),
4.15, 3.95 (m, 8 H, CH2), 1.35 (t, 12 H, CH3). 31P{1H} NMR (CD2-
Cl2, 25 °C; δ): A2, 130.0 (s). Anal. Calcd for C23H30ClO7P2Re:
C, 39.35; H, 4.31; Cl, 5.05. Found: C, 39.26; H, 4.39; Cl, 4.88.
ReBr(CO)3[PPh(OEt)2]2. IR (KBr; cm-1): νCO 2025 (w), 1978,
1
1893 (s). H NMR (CD2Cl2, 25 °C; δ): 7.70, 7.48 (m, 10 H, Ph),
4.12, 3.88 (m, 8 H, CH2), 1.33, 1.31 (t, 12 H, CH3). 31P{1H} NMR
(C6D6, 25 °C; δ): A2, 126.0 (s). Anal. Calcd for C23H30BrO7P2Re:
C, 37.00; H, 4.05; Br, 10.70. Found: C, 37.13; H, 4.00; Br, 10.91.
ReCl(CO)2P3 (P ) PPh(OEt)2, P(OEt)3). An excess of the
appropriate phosphite (17 mmol) was added to a solution of ReCl-
(CO)5 (5.0 mmol, 1.8 g) in 40 mL of toluene, and the reaction
mixture was irradiated at room temperature for 70 min in a Pyrex
Schlenk flask under a standard 400 W medium-pressure mercury
arc lamp. The solvent was then evaporated to dryness under reduced
pressure to give an oil, which was triturated with ethanol. A white
solid slowly separated out from the resulting solution, which was
isolated by filtration and crystallized from CH2Cl2 and ethanol; yield
g75%.
ReCl(CO)2[PPh(OEt)2]3. IR (KBr; cm-1): νCO 1985, 1873 (s).
1H NMR (CD2Cl2, 25 °C; δ): 7.75-7.30 (m, 15 H, Ph), 4.10, 3.75
(m, 12 H, CH2), 1.27, 1.23 (t, 18 H, CH3). 31P{1H} NMR (CD2Cl2,
25 °C; δ): AB2, δA 129.9, δB 127.8, JAB ) 35.5 Hz. Anal. Calcd
(7) For rhenium tin complexes see: (a) Preut, H.; Haupt, H.-J.; Florke,
U. Acta. Crystallogr., Sect. C 1984, 40, 600. (b) Haupt, H.-J.; Balsaa, P.;
Schwab, B.; Florke, U.; Preut, H. Z. Anorg. Allg. Chem. 1984, 22, 513. (c)
Narayanan, B. A.; Kochi, J. K. Inorg. Chim. Acta 1986, 122, 85-90. (d)
Westerberg, D. E.; Sutherland, B. E.; Huffman, J. C.; Caulton, K. G. J.
Am. Chem. Soc. 1988, 110, 1642-1643. (e) Warnock, G. F. P.; Moodie, L.
C.; Ellis, J. E. J. Am. Chem. Soc. 1989, 111, 2131-2141. (f) Luong, J. C.;
Faltynek, R. A.; Wrighton, M. S. J. Am. Chem. Soc. 1980, 102, 7892-
7900. (g) Huie, B. T.; Kirtley, S. W.; Knobler, C. B.; Kaesz, H. D. J.
Organomet. Chem. 1981, 213, 45-62. (h) Loza, M. L.; Crabtree, R. H.
Inorg. Chim. Acta 1995, 236, 63-66.
(9) Balacco, G. J. Chem. Inf. Comput. Sci. 1994, 34, 1235-1241 (http://
www.inmr.net/).
(10) (a) Reimer, K. J.; Shaver, A. Inorg. Synth. 1990, 28, 155-156, 158-
159. (b) Quick, M. H.; Angelici, R. J. Inorg. Synth. 1990, 28, 156-157.
(c) Schmidt, S. P.; Trogler, W. C.; Basolo, F. Inorg. Synth. 1990, 28, 160-
163.
(8) Rabinowitz, R.; Pellon, J. J. Org. Chem. 1961, 26, 4623-4626.