observed between H-6 and H-11, NOESY coupling between H-6
and H-11 observed. No NOESY or NOE interaction observed
between H-11 and H-8; dH (600 MHz; CDCl3) 7.67 (4H, m, o-Ph),
7.44 (2H, p-Ph), 7.38 (4H, m-Ph), 4.84 (1H, d, J 7.3, O-10-CH2O),
4.80 (1H, d, J 6.7, O-8-CH2O), 4.71 (1H, d, J 7.3, O-10-CH2O),
4.69 (1H, d, J 6.7, O-8-CH2O), 4.22 (1H, m, H-3), 4.00 (1H, br d,
J 8.6, OH), 3.92 (1H, dd, J 11.0, 2.5, H-8), 3.79 (1H, d, J 10.7,
H-11), 3.74 (1H, dd, J 9.3, 5.7, H-6), 3.63 (3H, m, SiCH2CH2
and H-11ꢀ), 3.47 (3H, s, OCH3), 3.31 (1H, br s, OH), 2.83 (1H, m,
H-1), 2.36 (1H, m, H-5), 2.29 (1H, m, H-4), 1.82 (1H, dd, J 14.7,
11.0, H-9), 1.76 (1H, dd, J 14.7, 2.5, H-9ꢀ), 1.48 (1H, m, H-2), 1.43
(3H, s, H-14), 1.32 (1H, m, H-2ꢀ), 1.11 (3H, d, J 7.0, H-15), 1.08
(9H, s, C(CH3)3), 0.91 (11H, m, SiCH2CH2 and SiCH2CH3), 0.57
(6H, q, J 8.0, SiCH2CH3), −0.10 (9H, s, Si(CH3)3); dC (150 MHz;
CDCl3)135.9 (o-Ph), 135.8 (o-Ph), 135.0 (ipso-Ph), 134.1 (ipso-Ph),
129.5 (p-Ph), 127.52 (m-Ph), 127.46 (m-Ph), 95.9 (O-8-CH2O), 90.6
(O-10-CH2O), 79.6 (C-10), 78.7 (C-7), 77.4 (C-8), 74.9 (C-3),
72.5 (C-6), 65.3 (SiCH2CH2), 64.0 (C-11), 55.6 (OCH3), 48.5
(C-5), 46.7 (C-1), 42.0 (C-4), 38.2 (C-9), 38.0 (C-2), 29.6 (C-
14), 27.1 (C(CH3)3), 19.4 (C(CH3)3), 18.0 (SiCH2CH2), 15.4 (C-
15), 6.7 (Si(CH2CH3)3), 4.3 (Si(CH2CH3)3), −1.5 (Si(CH3)3); mmax
(film; cm−1) 3413 (br, O–H), 2929 (C–H), 1460 (Ar), 1428 (Ar),
822 (Si(CH3)3); [a]D +61.4 (c 0.28, CHCl3); found (ESI+) [MNa]+
825.4572; C43H74O8Si3Na requires M, 825.4589.
2006, 14, 2810; (b) C. M. Jakobsen, S. R. Denmeade, J. T. Isaacs, A.
Gady, C. E. Olsen and S. B. Christensen, J. Med. Chem., 2001, 44,
4696; (c) S. B. Christensen, A. Andersen, H. Kromann, M. Treiman,
B. Tombal, S. Denmeade and J. T. Isaacs, Bioorg.Med. Chem., 1999,
7, 1273; (d) S. B. Christensen, A. Andersen, J. C. J. Poulsen and M.
Treiman, FEBS Lett., 1993, 335, 345; (e) H. Søhoel, T. Liljefors, S. V.
Ley, S. F. Oliver, A. Antonello, M. D. Smith, C. E. Olsen, J. T. Isaacs
and S. B. Christensen, J. Med. Chem., 2005, 48, 7005; (f) C. Xu, H. Ma,
G. Inesi, M. K. Al-Shawi and C. Toyoshima, J. Biol. Chem., 2004, 279,
17973.
10 S. B. Christensen, A. Andersen, U. W. Smitt, D. Deepale and S.
Srivastar, Fortschr. Chem. Org. Naturst., 1997, 71, 129 and references
therein.
11 (a) O. Pedersen, C. Christophersen, L. Brehm and S. B. Christensen,
Acta Chem. Scand., Ser. B, 1985, 39, 375; (b) A. Lauridsen, C. Cornett,
T. Vulpius, P. Moldt and S. B. Christensen, Acta Chem. Scand., 1996,
50, 150.
12 S. V. Ley, A. Antonello, E. P. Balskus, D. T. Booth, S. B. Christensen, E.
Cleator, H. Gold, K. Ho¨genauer, U. Hu¨nger, R. M. Myers, S. F. Oliver,
O. Simic, M. D. Smith, H. Søhoel and A. J. A. Woolford, Proc. Natl.
Acad. Sci. U. S. A., 2004, 101, 12073.
13 (a) A. Andersen, C. Cornett, A. Lauridsen, C. E. Olsen and S. B.
Christensen, Acta Chem. Scand., 1994, 48, 340; (b) S. F. Nielsen, O.
Thastrup, R. Pedersen, C. E. Olsen and S. B. Christensen, J. Med.
Chem., 1995, 38, 272; (c) S. B. Christensen, M. Hergenhahn, H. Roeser
and E. Hecker, J. Cancer Res. Clin. Oncol., 1992, 118, 348.
14 O-10-Deacetyl thapsigargin has been shown to be 40 times less potent
than the natural product (see ref. 13a). We therefore chose to retain the
acetate at this position of our analogues.
15 S. F. Oliver, K. Ho¨genauer, O. Simic, A. Antonello, M. D. Smith and
S. V. Ley, Angew. Chem., Int. Ed., 2003, 42, 5996.
16 G. Stork and T. Takahashi, J. Am. Chem. Soc., 1977, 99, 1275.
17 (a) L. Horner, H. Hoffman and H. G. Wippel, Chem. Ber., 1958, 91,
61; (b) W. S. Wadsworth and W. D. Emmons, J. Am. Chem. Soc., 1961,
83, 1733.
18 (a) W. P. Griffith, S. V. Ley, G. P. Whitcombe and A. D. White, J. Chem.
Soc., Chem. Commun., 1987, 1625; (b) S. V. Ley, J. Norman, W. P.
Griffith and S. P. Marsden, Synthesis, 1994, 639.
19 For substrate 18, the d.r. of the reduction could not be improved by
using reaction temperature as low as −78 ◦C. The, use of K-selectride
as the reducing agent overturned the observed facial selectivity, and
formed alcohol 17 as the major product (d.r. >19 : 1).
20 B. Hartmann, A. M. Kanazawa, J. P. Depres and A. E. Greene,
Tetrahedron Lett., 1991, 32, 5077.
Acknowledgements
This work was supported by an Insight Faraday CASE award
(SPA), GlaxoSmithKline (MMT), EPSRC (MB) and a Novartis
Fellowship (SVL). The authors also wish to thank Dr Neil Miller
for helpful discussions.
References and notes
1 (a) O. Thastrup, P. J. Cullen, B. K. Drøbak, M. Hanley and A. P.
Dawson, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 2466; (b) J. Lytton, M.
Westlin and M. Hanley, J. Biol. Chem., 1991, 266, 17067; (c) Y. Sagara
and G. Inesi, J. Biol. Chem., 1991, 266, 13503; (d) G. A. Davidson and
R. J. Varhol, J. Biol. Chem., 1995, 270, 11731.
21 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1,
1975, 1574.
22 Attempts to prepare the corresponding C-7 mesylate of 23 and displace
it with hydride were also unsuccessful.
2 (a) T. L. M. Sørensen, C. Olesen, A. M. L. Jensen, J. V. Møller and P.
Nissen, J. Biotechnol., 2006, 124, 704; (b) J. V. Møller, P. Nissen, T. L. M.
Sørensen and M. le Maire, Curr. Opinion Struct. Biol., 2005, 15, 387;
(c) C. Toyoshima, H. Nomura and T. Tsuda, Nature, 2004, 432, 361;
(d) C. R. D. Lancaster, Nature, 2004, 432, 286; (e) T. L. Sørensen, J. V.
Møller and P. Nissen, Science, 2004, 304, 1672.
23 B. H. Lipshutz and J. J. Pegram, Tetrahedron Lett., 1980, 21,
3343.
24 Attempts to conserve the number of synthetic steps by directly installing
the required O-6 acetate functionality on 23 ultimately led to migration
of the acetate group from O-6 to O-7 during subsequent reduction of
the ketone (see ESI† for details of acetate preparation).
3 H. Ali, S. B. Christensen, J. C. Foreman, F. L. Pearce, W. Piotrowski
and O. Thastrup, Br. J. Pharmacol., 1985, 85, 705.
4 (a) R. T. Waldron, A. D. Short, J. J. Meadows, T. K. Ghosh and D. L.
Gill, J. Biol. Chem., 1994, 269, 11927; (b) A. D. Short, J. Bian, T. K.
Ghosh, R. T. Waldron and S. L. Rybak, Proc. Natl. Acad. Sci. U. S. A.,
1993, 90, 4986; (c) T. K. Ghosh, J. Bian, A. D. Short, S. L. Rybak and
D. L. Gill, J. Biol. Chem., 1991, 266, 24690.
5 (a) X. S. Lin, S. R. Denmeade, L. Cisek and J. T. Isaacs, Prostate, 1997,
80, 201; (b) T. Futami, M. Miyagishi and K. Taira, J. Biol. Chem., 2005,
280, 826.
6 S. R. Denmeade, C. M. Jakobsen, S. Janssen, S. R. Khan, E. S. Garrett,
H. Lilja, S. B. Christensen and J. T. Isaacs, J. Natl. Cancer Inst., 2003,
95, 990.
7 M. Ball, S. P. Andrews, F. Wierschem, E. Cleator, M. D. Smith and S. V.
Ley, Org. Lett., 2007, 9, 663.
8 S. P. Andrews, M. Ball, F. Wierschem, E. Cleator, S. Oliver, K.
Ho¨genauer, O. Simic, A. Antonello, U. Hu¨nger, M. D. Smith and S. V.
Ley, Chem.–Eur. J., 2007, DOI: 10.1002/chem.200700302.
9 (a) H. Søhoel, A. M. L. Jensen, J. V. Møller, P. Nissen, S. R. Denmeade,
J. T. Isaacs, C. E. Olsen and S. B. Christensen, Bioorg. Med. Chem.,
25 S. G. Kim, I. S. Kee, Y. H. Park and J. H. Park, Synlett, 1991, 183.
26 Attempts to deprotect O-10 in the presence of the C-7 ketone on other
substrates, and with 38 under different reaction conditions, also led to
the formation of analogous lactol derivatives.
27 G. Wittig and U. Schollkopf, Chem. Ber., 1954, 97, 1318.
28 Attempts to methylenate 13 proceeded similarly (see ESI† for spectra).
In our hands, other methylenation procedures including Tebbe, Nysted
and Petasis reagents under standard conditions all failed to generate 40.
The use of a microwave-mediated Petasis reaction afforded the desired
product (40) in 21% isolated yield. For a similar reaction, see: M. J.
Gaunt, A. S. Jessiman, P. Orsini, H. R. Tanner, D. F. Hook and S. V.
Ley, Org. Lett., 2003, 5, 4819.
29 H. L. Kwong, C. Sorato, Y. Ogino, C. Hou and K. B. Sharpless,
Tetrahedron Lett., 1990, 31, 2999.
30 Significant quantities of material were lost during this poor esterifica-
tion reaction, but we were able to isolate the desired product (47, 2.9%)
as well as the corresponding MOM-deprotected derivative (9.1%). The
two analogous C-3 tiglate compounds (in which the angelate esters
had isomerised) were also isolated (3.6% and 4.2%, respectively). See
Experimental section and ESI† for further information.
1436 | Org. Biomol. Chem., 2007, 5, 1427–1436
This journal is
The Royal Society of Chemistry 2007
©