4734
S. Toumieux et al. / Tetrahedron Letters 46 (2005) 4731–4735
OBn
O
References and notes
Boc2O (2 eq.)
Et3N (3.5 eq.)
DMAP cat.
OBn
Bn
O
O
O
BnO
BnO
O
1. (a) Shilov, A. E.; ShulÕpin, G. B. Chem. Rev. 1997, 97,
2879; (b) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417,
507; (c) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003,
345, 1077; (d) Schreiner, P. R.; Fokin, A. A. Chem. Record
2004, 3, 247; (e) Gois, P. M. P.; Afonso, C. A. M. Eur. J.
Org. Chem. 2004, 3773.
2. (a) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J.
Am. Chem. Soc. 2001, 123, 6935; (b) Espino, C. G.; Du
Bois, J. Angew. Chem., Int. Ed. 2001, 40, 598.
3. Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Yu, W.-Y.; Che,
C.-M. Angew. Chem., Int. Ed. 2002, 41, 3465.
4. For pioneering work on intramolecular nitrene C–H
insertion see: (a) Breslow, R.; Gellman, S. H. J. Am.
Chem. Soc. 1983, 105, 6728; For a recent study using chiral
O
O
BnO
H
2eq N
THF, 2h
N
H
Boc
H2ax
ed > 98%
65%
12α
13
Boc2O (2 eq.)
Et3N (3.5 eq.)
DMAP cat.
OBn
OBn
Boc
N
H
N
O
O
BnO
BnO
BnO
BnO
O
O
THF, 3h
O
14
ed > 98%
O
12β
90%
Scheme 6.
dirhodium(II) complexes see: (b) Fruit, C.; Muller, P.
¨
Helv. Chim. Acta 2004, 87, 1607.
equilibration of the initially formed epimer 12b.22 This
claim is supported by an equilibration experiment per-
formed from a pure sample of 12b. Under typical amina-
5. Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125,
11510.
6. See for example: (a) Godin, G.; Compain, P.; Masson,
G.; Martin, O. R. J. Org. Chem. 2002, 67, 6960; (b) Godin,
G.; Compain, P.; Martin, O. R. Org Lett. 2003, 5, 3269;
(c) Rousseau, C.; Martin, O. R. Org. Lett. 2003, 5,
3763.
7. Hanessian, S.; Lou, B. Chem. Rev. 2000, 100,
4443.
8. For a review on amino C-glycoside synthesis see: Xie, J.
Recent Res. Devel. Org. Chem. 1999, 3, 505.
9. Feming, J. J.; Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc.
2003, 125, 2028.
1
tion conditions, epimerization occurred and H NMR
analysis of the crude product indicated the following ra-
tio: 12a/12b 1:2.2 after 16 h. These results confirm that
the amination reaction proceed either via a direct inser-
tion mechanism or by H-abstraction/radical recombina-
tion where the second step is extremely fast,11 thus
preventing the formation of a planar p-type anomeric
radical intermediate.23
The cyclic carbamates 12 were protected with a Boc
group (Scheme 6). Interestingly, extensive NMR analy-
sis indicated that compound 1324 exists predominantly
in a B2,5 conformation in which the N-Boc and benzyl-
oxymethyl substituents adopted a pseudo-equatorial
position that minimizes steric interactions. Coupling
constants24 are in good agreement with the proposed
structure as well as NOE effects observed between H-5
and H-2ax, and between H0a and H-2eq. As a general
rule, C–N bond of the N-Boc spiranic derivatives 9,
10, 13, or 14 always adopt an equatorial position via epi-
merization or conformational interconversion.
10. (a) For an example of an intramolecular insertion of
alkylidene carbenes into anomeric C–H bond see: War-
drop, D. J.; Zhang, W.; Fritz, J. Org. Lett. 2002, 4, 489; (b)
For an example of an intramolecular N-glycosidation via
1,5-hydrogen abstraction and an oxocarbenium ion inter-
´
mediate see: Francisco, C. G.; Herrera, A. J.; Suarez, E.
J. Org. Chem. 2003, 68, 1012; (c) For an example of a
chemoselective insertion of a rhodium nitrene in an allylic
C–H bond of a carbohydrate see: Parker, K. A.; Chang,
W. Org. Lett. 2005, 7, 1785.
11. (a) Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Che, C.-M. J.
Org. Chem. 2004, 69, 3610; (b) Au, S.-M.; Huang, J.-S.;
Yu, W.-Y.; Fung, W.-H.; Che, C.-M. J. Am. Chem. Soc.
1999, 121, 9120; (c) Wehn, P.; Lee, J.; Du Bois, J. Org.
Lett. 2003, 5, 4823; (d) Na¨gelli, I.; Baud, C.; Bernardinelli,
In conclusion, we have reported the first examples of
intramolecular metal-catalyzed amination of a pseudo-
anomeric C–H bonds in a C-glycoside. The oxidative
conversion of sulfamate esters 6b and carbamates 11
provides bicyclic glycomimetics25 containing a function-
alizable N,O-acetal structure. No correlation between
anomeric stereochemistry and insertion efficiency was
found for the conversion of carbamates 11. In contrast,
amination reactions of the corresponding sulfamate
esters 6 were found to be strongly dependent on the
ÔanomericÕ configuration. Exploration of the chemical
reactivity of the oxathiazolidines or oxazolidines synthe-
sized as well as further applications of Rh-catalyzed
amination reactions to carbohydrates are currently
under investigations in our laboratory.
G.; Jacquier, Y.; Moran, M.; Muller, P. Helv. Chim. Acta
1997, 80, 1087.
¨
12. Costantino, V.; Imperatore, C.; Fattorusso, E.; Mangoni,
A. Tetrahedron Lett. 2000, 41, 9177.
13. (a) Goujon, J.-Y.; Gueyrard, D.; Compain, P.; Martin, O.
R.; Asano, N. Tetrahedron: Asymmetry 2003, 14, 1969; (b)
Goujon, J.-Y.; Gueyrard, D.; Compain, P.; Martin, O. R.;
Ikeda, K.; Kato, A.; Asano, N. Bioorg. Med. Chem. 2005,
13, 2313.
14. Cho, I. H.; Paquette, L. A. Heterocycles 2002, 58,
43.
15. The presence of a quaternary carbon at d 90.7 in 13C
NMR is a characteristic of a N,O-acetal structure.
16. (a) Du Bois, personal communication, see Ref. 16b; (b)
Fiori, K. W.; Fleming, J. J.; Du Bois, J. Angew. Chem.,
Int. Ed. 2004, 43, 4349.
1
17. Selected data for 9: H (500 MHz, CDCl3): d (ppm) 7.32
(m, 15H, 3C6H5); 4.91 (d, 1H, CH2Bn, J = 10.7 Hz); 4.71–
Acknowledgements
4.64 (m, 4H, CH2Bn); 4.61 (d, 1H, H0 J = 9.8 Hz); 4.57
b
(d, 1H, CH2Bn, J = 12.1 Hz); 4.21 (d, 1H, H0 ,
a
Financial support of this study by grants from CNRS
is gratefully acknowledged. S.T. thanks the French
Department of Research for a fellowship (MENRT).
J = 9.8 Hz); 3.84 (dd, 1H, H6b, J = 7.8, 11.6 Hz); 3.76–
3.70 (m, 2H, H4, H6a), 3.59–3.50 (m, 2H, H3, H5); 3.02 (t,
1H, H2ax, J = 12.8 Hz); 2.23 (dd, H2eq, J = 4.7, 13.1 Hz);