2906
Y. Hoshina et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2904–2907
Table 2. Competitive binding assays by FCS and inhibitory activities of aeruginosin derivatives against trypsin
Compound
FCS assay with 3 IC50 (lM)
FCS assay with 6 IC50 (lM)
Inhibition of trypsin IC50 (lM)
1
2.1
16
200
0.19
2.0
19
2
0.063
0.65
8.8
D-Hpla-D-Leu-L-Choi-L-Arg-OH
D-Hpla-D-Tyr-L-Choi-L-Argol
D-Hpla- D-Tyr-L-Choi-L-Arg-OH
D-Hpla-D-Tyr-L-Choi-Agma
D-Hpla-D-Tyr-L-Choi-Agma
D-Hpla-L-Phe-L-Choi-L-Arg-OH
D-Hpla-L-Phe-L-Choi-L-Arg-OH
D-Hpla-L-Phe-L-Choi-L-Arg-OH
20
78
130
9.3
23
17
1.0
0.51
>200
>200
190
59
0.15
>200
>200
12
>200
>200
78
>100
15
To demonstrate the utility of the chemical probes 3
and 6, we used them in an FCS-based competitive
binding assay of an aeruginosin library (Table 2).
The trypsin inhibitory activity of the library has been
reported previously.10 When the more active ligand 6
was applied to the FCS-based competitive binding
assay, the most active compound 2 in the binding assay
was identical with that explained by the inhibitory
activity. In addition, the order of the relative binding
affinity of the library was comparable to its inhibitory
activity. However, the binding assay using the less
active ligand 3 provided the incorrect compound 1 as
the most potent compound. These results indicated
that the additional hydroxymethyl group of 3 on the
Argol could promote specific or non-specific binding
of 3 to trypsin that did not lead to the inhibitory
activity.
References and notes
1. (a) Campbell, D. A.; Szardenings, A. K. Curr. Opin.
Chem. Biol. 2003, 7, 296; (b) Tietze, L. F.; Bell, H. P.;
Chandrasekhar, S. Angew. Chem., Int. Ed. 2003, 42, 3996;
(c) Ortholand, J.-Y.; Ganesan, A. Curr. Opin. Chem. Biol.
2004, 8, 271; (d) Boldi, A. M. Curr. Opin. Chem. Biol.
2004, 8, 281; (e) Ganesan, A. Curr. Opin. Biotech. 2004, 15,
584.
2. (a) Ruhl, T.; Daghish, M.; Buchynskyy, A.; Barche, K.;
¨
Volke, D.; Stembera, K.; Kempin, U.; Knoll, D.; Hennig,
L.; Findeisen, M.; Oehme, R.; Giesa, S.; Ayala, J.; Welzel,
P. Bioorg. Med. Chem. 2003, 11, 2965; (b) Li, J.; Kim, I.
H.; Roche, E. D.; Beeman, D.; Lynch, A. S.; Ding, C. Z.;
Ma, Z. Bioorg. Med. Chem. Lett. 2006, 16, 794.
3. Recent results of application of fluorescent-labeled bio-
logically active small molecules to biological evaluation.
(a) Berque-Bestel, I.; Soulier, J.-L.; Giner, M.; Rivail, L.;
Langlois, M.; Sicsic, S. J. Med. Chem. 2003, 46, 2606; (b)
Ho¨dl, C.; Strauss, W. S. L.; Sailer, R.; Seger, C.; Steiner,
R.; Haslinger, E.; Schramm, H. W. Bioconjugate Chem.
2004, 15, 359; (c) Cha, J. H.; Zou, M.-F.; Adkins, E. M.;
Rasmussen, S. G. F.; Loland, C. J.; Schoenenber, B.;
Gether, U.; Newman, A. H. J. Med. Chem. 2005, 48, 7513;
(d) Vukojevicacute, V.; Pramanik, A.; Yakovleva, T.;
Rigler, R.; Terenius, L.; Bakalkin, G. Cell Mol. Life Sci.
In conclusion, the design and solid-phase synthesis of
effective fluorescent-labeled aeruginosin derivatives and
their application to the FCS-based competitive binding
assay of an aeruginosin library are described. The
phenolic hydroxy group on the Hpla residue was found
to be suitable for connecting Rhodamine green deriva-
tive with minimum loss of biological activity. An FCS-
based competitive binding assay using the appropriate
fluorescent-labeled derivative 6 gave results that were
comparable to those of the protease inhibition assay.
In addition, the FCS-based binding assay of the library
using fluorescent-labeled chemical probes would be an
effective method because of its small observed-volume
and high sensitivity.
´
2005, 62, 535; (e) Vazquez, M. E.; Blanco, J. B.; Salvadori,
S.; Trapella, C.; Argazzi, R.; Bryant, S. D.; Jinsmaa, Y.;
Lazarus, L. H.; Negri, L.; Ginnini, E.; Lattanzi, R.;
Colucci, M.; Balboni, G. J. Med. Chem. 2006, 49, 3653.
4. (a) Eigen, M.; Rigler, R. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 5740; (b) Wohland, T.; Friedrich, K.; Hovius, R.;
Vogel, H. Biochemsitry 1999, 38, 8671; (c) Moore, K. J.;
Turconi, S.; Ashman, S.; Ruediger, M.; Haupts, U.;
Emerick, V.; Pope, A. J. J. Biomol. Screen. 1999, 4, 335.
5. Murakami, M.; Okita, Y.; Matsuda, H.; Okino, T.;
Yamaguchi, K. Tetrahedron Lett. 1994, 35, 3132.
6. (a) Murakami, M.; Ishida, K.; Okino, T.; Okita, Y.;
Matsuda, H.; Yamaguchi, K. Tetrahedron Lett. 1995, 36,
2785; (b) Matsuda, H.; Okino, T.; Murakami, M.;
Yamaguchi, K. Tetrahedron 1996, 52, 14501; (c) Shin,
H.; Matsuda, H.; Murakami, M.; Yamaguchi, K. J. Org.
Chem. 1997, 62, 1810; (d) Kodani, S.; Ishida, K.; Mura-
kami, M. J. Nat. Prod. 1998, 61, 1046; (e) Ishida, K.;
Matsuda, H.; Okino, T.; Murakami, M. Tetrahedron 1999,
55, 10971; (f) Banker, R.; Carmeli, S. Tetrahedron 1999,
55, 10835.
Acknowledgment
This work was supported in part by NEDO (the New
Energy and Industrial Technology Development Orga-
nization) in Japan.
Supplementary data
7. Steiner, J. L. R.; Murakami, M.; Tulinsky, A. J. Am.
Chem. Soc. 1998, 120, 597.
8. Sandler, B.; Murakami, M.; Clardy, J. J. Am. Chem. Soc.
1998, 120, 595.
Supplementary data associated with this article can be