Page 5 of 6
Journal of the American Chemical Society
protein targets in cell lysates. J. Am. Chem. Soc. 2014, 136,
F.; Wood, K. V. HaloTag: a novel protein labeling technology
for cell imaging and protein analysis. ACS Chem. Biol. 2008,
3 (6), 373−382.
3264−3270. (c) Chan, A.I.; McGregor, L.M.; Jain, T.; Liu, D.R.
Discovery of a covalent kinase inhibitor from a DNA-
encoded small-molecule library× protein library selection. J.
Am. Chem. Soc. 2017, 139, 10192-10195.
1
2
3
4
5
6
7
8
13. Peraro, L.; Deprey, K. L.; Moser, M. K.; Zou, Z.; Ball, H. L.;
Levine, B.; Kritzer, J. A. Cell penetration profiling using the
chloroalkane penetration assay. J. Am. Chem. Soc. 2018, 140,
11360−11369.
4. (a) Li, G.; Liu, Y.; Liu, Y.; Chen, L.; Wu, S.; Liu, Y.; Li, X.
Photoaffinity Labeling of Small-Molecule-Binding Proteins
by DNA-Templated Chemistry. Angew. Chem., Int. Ed. 2013,
125, 9723-9728. (b) Denton, K.E.; Krusemark, C.J.
Crosslinking of DNA-linked ligands to target proteins for
enrichment from DNA-encoded libraries. MedChemComm.
2016, 7, 2020-2027.
5. Shi, B.; Deng, Y.; Zhao, P.; Li, X. Selecting a DNA-Encoded
Chemical Library against Non-immobilized Proteins Using a
“Ligate–Cross-Link–Purify” Strategy. Bioconjugate Chem.
2017, 28, 2293-2301.
6. (a) Fulton, A.B. How crowded is the cytoplasm? Cell. 1982,
30, 345-347. (b) Kim, M. S.; Song, J.; Park, C. Determining
protein stability in cell lysates by pulse proteolysis and
Western blotting. Protein Sci. 2009, 18, 1051-1059.
7. (a) Farokhzad, O. C.; Cheng, J.; Teply, B. A.; Sherifi, I.; Jon, S.;
Kantoff, P. W.; Richie, J. P.; Langer, R. Targeted nanoparticle-
aptamer bioconjugates for cancer chemotherapy in vivo.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 6315–6320. (b)
Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z.; Chen, H.; Mallikaratchy,
P.; Sefah, K.; Yang, C.; Tan, W. Aptamers evolved from live
cells as effective molecular probes for cancer study. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 11838–11843. (c) Xiao, Z.;
Levy-Nissenbaum, E.; Alexis, F.; Lupták, A.; Teply, B.A.; Chan,
J.M.; Shi, J.; Digga, E.; Cheng, J.; Langer, R.; Farokhzad, O.C.
Engineering of targeted nanoparticles for cancer therapy
using internalizing aptamers isolated by cell-uptake
selection. ACS nano. 2012, 6, 696-704.
8. Wu, Z.; Graybill, T. L.; Zeng, X.; Platchek, M.; Zhang, J.;
Bodmer, V. Q.; Wisnoski, D. D.; Deng, J.; Coppo, F. T.; Yao, G.;
Tamburino, A.; Scavello, G.; Franklin, G. J.; Mataruse, S.;
Bedard, K. L.; Ding, Y.; Chai, J.; Summerfield, J.; Centrella, P.
A.; Messer, J. A.; Pope, A. J.; Israel, D. I. Cell-based selection
expands the utility of DNA-encoded small-molecule library
technology to cell surface drug targets: Identification of
novel antagonists of the NK3 tachykinin receptor. ACS Comb.
Sci. 2015, 17, 722−731.
9. Qian, Z.; Martyna, A.; Hard, R.L.; Wang, J.; Appiah-Kubi, G.;
Coss, C.; Phelps, M.A.; Rossman, J.S.; Pei, D. Discovery and
mechanism of highly efficient cyclic cell-penetrating
peptides. Biochemistry. 2016, 55, 2601-2612.
10. Roers, A.; Hiller, B.; Hornung, V. Recognition of endogenous
nucleic acids by the innate immune system. Immunity. 2016,
44, 739-754.
11. (a) Howell, D. P. -G.; Krieser, R. J.; Eastman, A.; Barry, M. A.
Deoxyribonuclease II is a lysosomal barrier to transfection.
Mol. Ther. 2003, 8, 957−963. (b) Sperinde, J.J.; Choi, S.J.;
Szoka Jr, F.C. Phage display selection of a peptide DNase II
inhibitor that enhances gene delivery. J. Gene Med. 2001, 3,
101-108.
12. Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.;
Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana,
R. F.; Urh, M.; Simpson, D.; Mendez, J.; Zimmerman, K.; Otto,
P.; Vidugiris, G.; Zhu, j.; Darzins, A.; Klaubert, D. H.; Bulleit, R.
14. (a) Ishikawa, H.; Barber, G.N. STING is an endoplasmic
reticulum adaptor that facilitates innate immune signalling.
Nature. 2008, 455, 674-678. (b) Ishikawa, H.; Ma, Z.; Barber,
G.N. STING regulates intracellular DNA-mediated, type I
interferon-dependent innate immunity. Nature. 2009, 461,
788-792. (c) Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic
GMP-AMP synthase is a cytosolic DNA sensor that activates
the type I interferon pathway. Science. 2013, 339, 786-791.
(d) Watson, R.O.; Bell, S.L.; MacDuff, D.A.; Kimmey, J.M.;
Diner, E.J.; Olivas, J.; Vance, R.E.; Stallings, C.L.; Virgin, H.W.;
Cox, J.S. The cytosolic sensor cGAS detects Mycobacterium
tuberculosis DNA to induce type I interferons and activate
autophagy. Cell host microbe. 2015, 17, 811-819.
15. (a) Simhadri, C.; Daze, K. D.; Douglas, S. F.; Quon, T. T. H.; Dev,
A.; Gignac, M. C.; Peng, F. N.; Heller, M.; Boulanger, M. J.; Wulff,
J. E.; Hof, F. Chromodomain antagonists that target the
polycomb-group methyllysine reader protein chromobox
homolog 7 (CBX7). J. Med. Chem. 2014, 57, 2874−2883. (b)
Denton, K. E.; Wang, S.; Gignac, M. C.; Milosevich, N.; Hof, F.;
Dykhuizen, E. C.; Krusemark, C. J. Robustness of in vitro
selection assays of DNA-encoded peptidomimetic ligands to
CBX7 and CBX8. SLAS Discovery. 2018, 23, 417−428.
16. Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W. In vivo
protein labeling with trimethoprim conjugates: a flexible
chemical tag. Nat. Methods. 2005, 2, 255-257.
17. Sannino, A.; Gabriele, E.; Bigatti, M.; Mulatto, S.; Piazzi, J.;
Scheuermann, J.; Neri, D.; Donckele, E.J.; Samain, F.
Quantitative Assessment of Affinity Selection Performance
by Using DNA-Encoded Chemical Libraries. ChemBioChem.
2019, 20, 955-962.
18. Balboni, G.; Onnis, V.; Congiu, C.; Zotti, M.; Sasaki, Y.; Ambo,
A.; Bryant, S. D.; Jinsmaa, Y.; Lazarus, L. H.; Trapella, C.;
Salvadori, S. Effect of lysine at C-terminus of the Dmt-Tic
opioid pharmacophore. J. Med. Chem. 2006, 49, 5610-5617.
19. Bryant, S. D.; Jinsmaa, Y.; Salvadori, S.; Okada, Y.; Lazarus, L.
H. Dmt and opioid peptides: a potent alliance. Biopolymers.
2003, 71, 86−102.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
20. Berezowska, I.; Chung, N. N.; Lemieux, C.; Wilkes, B. C.;
Schiller, P. W. Agonist vs antagonist behavior of opioid
peptides containing novel phenylalanine analogues in place
of Tyr1. J. Med. Chem. 2009, 52, 6941−6945.
21. Cassell, R.J.; Mores, K.L.; Zerfas, B.L.; Mahmoud, A.H.; Lill,
M.A.; Trader, D.J.; van Rijn, R.M. Rubiscolins are naturally
occurring G protein-biased delta opioid receptor peptides.
European Neuropsychopharmacology. 2019, 29, 450-456.
22. (a) Jetson, R. R.; Krusemark, C. J. Sensing Enzymatic Activity
by Exposure and Selection of DNA-Encoded Probes. Angew.
Chem., Int. Ed. 2016, 55, 9562-9566. (b) Kim, D.; Jetson, R.R.;
Krusemark, C.J. A DNA-assisted immunoassay for enzyme
activity via
a DNA-linked, activity-based probe. Chem.
Commun. 2017, 53, 9474–9477.
ACS Paragon Plus Environment