Angewandte
Chemie
(+)-14 in four steps from the commercially available Na-
methoxycarbonyl-l-tryptophan methyl ester (8), we focused
on the completion of the synthesis of (+)-chimonanthine (1,
Scheme 4). Under optimal reaction conditions, treatment of
the diester (+)-14 with a mixture of methanol and aqueous
potassium hydroxide provided the corresponding dicarbox-
ylic acid in 90% yield. Decarboxylation at the C2- and C2’-
position was achieved by sequential conversion into the
dicarboxylic acid chloride followed by treatment with tris-
(trimethylsilyl)silane and AIBN in toluene at 808C,[8] to
afford the hexacycle (+)-15 in 64% yield. At this point
photochemical[15] conditions for the removal of the benzene-
sulfonyl groups of 15 led to decomposition whereas strong
reductive conditions resulted in cleavage of the benzenesul-
enriched hexacycle (+)-14 provided a ready access to the
optically active alkaloids 1–3. This chemistry simultaneously
secures the vicinal quaternary stereocenters directed by the
stereochemistry at the C8a-position, and offers the shortest
enantioselective synthesis of these alkaloids from commer-
cially available materials. The application of this chemistry to
more complex hexahydropyrroloindole alkaloids will be
reported in due course.
Received: February 15, 2007
Published online: April 5, 2007
Keywords: alkaloids · dimerization · enantioselectivity · indoles ·
.
total synthesis
À
fonyl groups and fragmentation of the C3 C3’ bond, as
supported by the isolation (61%) of N-methoxycarbonyl-
tryptamine. Significantly, treatment of a methanolic solution
of hexacycle (+)-15 and sodium phosphate dibasic with
freshly prepared sodium amalgam[16] afforded the desired
diamine (+)-16 in 99% yield and greater than 99% ee.
Reduction of the two N-methoxycarbonyl groups of 16 with
sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al)
gave (+)-chimonanthine (1) in 82% yield. The structure of
synthetic (+)-1 was confirmed by single-crystal X-ray analysis
(Scheme 4).[7]
[1] a) “Bisindole Alkaloids”: G. A. Cordell, J. E. Saxton in The
Alkaloids: Chemistry and Physiology, Vol. 20, (Eds.: R. H. F.
Manske, R. G. A. Rodrigo), Academic Press, New York, 1981,
pp. 3 – 294; b) “Chemistry and Reactions of Cyclic Tautomers of
Tryptamines and Tryptophans”: T. Hino, M. Nakagawa in The
Alkaloids: Chemistry and Pharmacology, Vol. 34 (Ed.: A.
Brossi), Academic Press, New York, 1989, pp. 1 – 75; c) “Alka-
loids from the Medicinal Plants of New Caledonia”: T. SØvenet,
J. Pusset in The Alkaloids: Chemistry and Pharmacology, Vol. 48
(Ed.: G. A. Cordell), Academic Press, New York, 1996, pp. 58 –
59; d) D. Crich, A. Banerjee, Acc. Chem. Res., 2007, 40, 151 –
161.
[2] a) R. B. Woodward, N. C. Yang, T. J. Katz, V. M. Clark, J.
Harley-Mason, R. F. J. Ingleby, N. Sheppard, Proc. Chem. Soc.
1960, 76; b) R. Robinson, H. J. Teuber, Chem. Ind. 1954, 783.
[3] a) J. B. Hendrickson, R. Rees, R. Göschke, Proc. Chem. Soc.
1962, 383; b) T. Hino, S. Yamada, Tetrahedron Lett. 1963, 4, 1757;
c) A. I. Scott, F. McCapra, E. S. Hall, J. Am. Chem. Soc. 1964, 86,
302; d) M. Nakagawa, H. Sugumi, S. Kodato, T. Hino, Tetrahe-
dron Lett. 1981, 22, 5323; e) C.-L. Fang, S. Horne, N. Taylor, R.
Rodrigo, J. Am. Chem. Soc. 1994, 116, 9480; f) M. Somei, N.
Osikiri, M. Hasegawa, F. Yamada, Heterocycles 1999, 51, 1237;
g) H. Ishikawa, H. Takayama, N. Aimi, Tetrahedron Lett. 2002,
43, 5637; h) Y. Matsudz, M. Kitajima, H. Takayama, Hetero-
cycles 2005, 65, 1031; i) for their synthesis and resolution, see: L.
Verotta, F. Orsini, M. Sbacchi, M. A. Scheidler, T. A. Amador,
E. Elisabetsky, Bioorg. Med. Chem. 2002, 10, 2133.
Dissolution of (+)-1 in a mixture of [D4]acetic acid and
deuterium oxide followed by heating to 958C led to formation
of the isomeric calycanthine (3, Scheme 5).[17] We monitored
Scheme 5. Synthesis of (À)-calycanthine and (+)-folicanthine:
a) [D4]acetic acid, D2O, 958C, 24 h; 54% of (À)-3 and 5% of (+)-1
isolated; b) aq formaldehyde, NaBH(OAc)3, MeCN, 238C, 30 min,
100%.
[4] a) J. T. Link, L. E. Overman, J. Am. Chem. Soc. 1996, 118, 8166;
b) L. E. Overman, D. V. Paone, B. A. Stearns, J. Am. Chem. Soc.
1999, 121, 7702; c) L. E. Overman, J. F. Larrow, B. A. Stearns,
J. M. Vance, Angew. Chem. 2000, 112, 219; Angew. Chem. Int.
Ed. 2000, 39, 213; .
1
this transformation in situ by H NMR spectroscopy, which
revealed an equilibrium was established between 1 and 3
within 24 h in favor of calycanthine (ca. 85:15 3/1). Chroma-
tographic separation of the mixture afforded a 54% yield of
(À)-3 along with recovered chimonanthine (5%). We
obtained clear evidence for this equilibrium ratio when
(À)-3 was subject to identical conditions and the same ratio
was reached between 1 and 3 within 24 h. N-Methylation of
(+)-1 using formalin and sodium triacetoxyborohydride
provided the first synthetic sample of (+)-folicanthine (2) in
quantitative yield (Scheme 5).[7,18]
The concise and efficient total synthesis of (+)-chimo-
nanthine, (+)-folicanthine, and (À)-calycanthine is described.
The convergent assembly of these alkaloids used a reductive
CoI-promoted dimerization of the readily available endo bro-
mide (+)-11. The gram-scale synthesis of the enantiomerically
[5] For an important precedent on the isolation (10–15%) of a
dimeric by-product during prenylation studies at the C3a-
position of an exo-hexahydropyrroloindole-derived selenide
directed towards amauromine, see: K. M. Depew, S. P. Marsden,
D. Zatorska, A. Zatorski, W. G. Bornmann, S. J. Danishefsky, J.
Am. Chem. Soc. 1999, 121, 11953.
[6] a) M. Taniguchi, A. Gonsho, M. Nakagawa, and T. Hino, Chem.
Pharm. Bull. 1983, 31, 1856; b) G. T. Bourne, D. Crich, J. W.
Davies, D. C. Horwell, J. Chem. Soc. Perkin Trans. 1 1991, 1693;
c) M. Bruncko, D. Crich, R. Samy, Heterocycles 1993, 36, 1735;
d) M. Bruncko, D. Crich, R. Samy, J. Org. Chem. 1994, 59, 5543;
e) S. P. Marsden, K. M. Depew, S. J. Danishefsky, J. Am. Chem.
Soc. 1994, 116, 11143.
[7] For details, please see the Supporting Information.
[8] a) C. Chatgilialoglu, Acc. Chem. Res. 1992, 25, 188; b) M.
Ballestri, C. Chatgilialoglu, N. Cardi, A. Sommazzi, Tetrahedron
Lett. 1992, 33, 1787.
Angew. Chem. Int. Ed. 2007, 46, 3725 –3728
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3727