10.1002/anie.201812647
Angewandte Chemie International Edition
COMMUNICATION
[2] For selected examples, see: a) H. M. Garraffo, T. F. Spande, J. W. Daly, A.
Baldessari, E. G. Gros, J. Nat. Prod. 1993, 56, 357. b) C. Souccar, W. A.
Varanda, J. W. Daly, E. X. Albuquerque, Mol. Pharmacol. 1984, 25, 384. c)
Q. Zhang, G. Tu, Y. Zhao, T. Cheng, Tetrahedron. 2002, 58, 6795. d) Y.
Ohtake, A. Naito, H. Hasegawa, K. Kawano, D. Morizono, M. Taniguchi, Y.
Tanaka, H. Matsukawa, K. Naito, T. Oguma, Y. Ezure, Y. Tsuriya, Bioorg.
Med. Chem. 1999, 7, 1247.
[3] Selected recent examples of stereoselective synthesis of substituted
quinolizidines and indolizidines, see: a) W. H. Pearson, W.-K. Fang, J. Org.
Chem. 2000, 65, 7158. b) D. Yang, G. C. Micalizio, J. Am. Chem. Soc.
2009, 131, 17548. c) S. M. Amorde, I. T. Jewett, S. F. Martin, Tetrahedron
2009, 65, 3222. d) K. Murai, K. Matsuura, H. Aoyama, H. Fujioka, Org. Lett.
2016, 18, 1314. e) J. Day, B. Mckeever-Abbas, J. Dowden, Angew. Chem.
Int. Ed. 2016, 55, 5809.
[4] Enantioselective synthesis of substituted quinolizidines and indolizidines by
using reactants from the chiral pool or chiral auxiliaries. For recent reviews,
see: a) M. Chrzanowska, M. D. Rozwadowska, Chem. Rev. 2004, 104,
3341. b) K. W. Bentley, Nat. Prod. Rep. 2005, 22, 249. c) K. W. Bentley,
Nat. Prod. Rep. 2006, 23, 444. For selected examples, see: d) D. F. Taber,
P. B. Deker, L. J. Silverberg J. Org. Chem. 1992, 57, 5990. e) S. E.
Denmark, E. A. Martinborough, J. Am. Chem. Soc. 1999, 121, 3046. f) F. A.
Davis, B. Yang, J. Am. Chem. Soc. 2005, 127, 8398. g) S. M. Amorde, A. S.
Judd, S. F. Martin, Org. Lett. 2005, 7, 2031. h) A. Kapat, E. Nyfeler, G. T.
Giuffredi, P. Renaud, J. Am. Chem. Soc. 2009, 131, 17746. i) C. R. Reddy,
B. Latha, N. N. Rao, Tetrahedron 2012, 68, 145. j) Y. Tan, Y.-J. Chen, H.
Lin, H.-L. Luan, X.-W. Sun, X.-D. Yang, G.-Q. Lin, Chem. Commun. 2014,
50, 15913. k) N. V. G. Moorthy, S. V. Pansare, Tetrahedron 2018, 74, 1422.
[5] For recent examples of catalytic enantioselective synthesis of substituted
quinolizidines and indolizidines, see: a) R. T. Yu, T. Rovis, J. Am. Chem.
Soc. 2006, 128, 12370. b) R. T. Yu, E. E. Lee, G. Malik, T. Rovis, Angew.
Chem. Int. Ed. 2009, 48, 2379. c) T. Itoh, M. Yokoya, K. Miyauchi, K.
Nagata, A. Ohsawa, Org. Lett. 2006, 8, 1533. d) M. P. Lalonde, M. A.
McGowan, N. S. Rajapaksa, E. N. Jacobsen, J. Am. Chem. Soc. 2013, 135,
1891. e) M. Kretzschmar, F. Hofmann, D. Moock, C. Schneider, Angew.
Chem. Int. Ed. 2018, 57, 4774. f) S. Murarka, I. Deb, C. Zhang, D. Seidel, J.
Am. Chem. Soc. 2009, 131, 13226. g) Y. K. Kang, S. M. Kim, D. Y. Kim, J.
Am. Chem. Soc. 2010, 132, 11847. h) K. Frisch, A. Landa, S. Saaby, K. A.
Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 6058. i) X. Xu, P. Y. Zavalij,
M. P. Doyle, J. Am. Chem. Soc. 2013, 135, 12439. j) Z.-P. Yang, Q.-F. Wu,
W. Shao, S.-L. You, J. Am. Chem. Soc. 2015, 137, 15899. k) Z.-P. Yang, R.
Jiang, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2018, 140, 3114.
Scheme 3. Formal synthesis of (+)-gephyrotoxin.
2.0 mol % (S,S)-C10 on a gram-scale, affording 13 as the only
diastereoisomer observed in 78% yield with 95% ee. After
reduction of the ester group with LiAlH4, Ito’s intermediate 14
was obtained in 95% yield with both the diastereoselectivity and
enantioselectivity retained.
In summary, we have developed a highly efficient Ru-
catalyzed
cascade
asymmetric
hydrogenation/reductive
amination of quinolinyl- and quinoxalinyl-containing ketones. A
wide range of enantioenriched benzo-fused quinolizidines,
indolizidines and their analogues were obtained in good yields
with excellent diastereoselectivity and enantioselectivity under
mild reaction conditions. It was found that the generation of the
second chiral center in the reduction of the challenging
tetrasubstituted iminium salt is completely controlled by the
absolute configuration of the first chiral center formed in the
hydrogenation of quinoline ring. The practicality and the utility of
this protocol were further demonstrated by the formal synthesis
of (+)-gephyrotoxin, which presents the shortest route to date for
the enantioselective synthesis of Ito’s intermediate.
[6] a) D.-W. Wang, X.-B. Wang, D.-S. Wang, S.-M. Lu, Y.-G. Zhou, Y.-X. Li, J.
Org. Chem. 2009, 74, 2780. b) N. Ortega, D.-T. D.Tang, S. Urban, D. Zhao,
F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 9500. c) M. Rueping, L.
Hubener, Synlett 2011, 9, 1243.
Acknowledgements
[7] For selected recent reviews, see: a) D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-
G. Zhou, Chem. Rev. 2012, 112, 2557. b) D. Zhao, L. Candish, D. Paul, F.
Glorius, ACS Catal. 2016, 6, 5978. c) Y.-M. He, F.-T. Song, Q.-H. Fan, Top.
Curr. Chem. 2014, 343, 145. d) R. Kuwano, Heterocycles 2008, 76, 909. e)
B. Balakrishna, J. L. Núñez-Rico, A. Vidal-Ferran, Eur. J. Org. Chem. 2015,
5293. For selected examples of asymmetric hydrogenation of quinolines
and quinoxalines, see: f) W.-B. Wang, S.-M. Lu, P.-Y. Yang, X.-W. Han, Y.-
G. Zhou, J. Am. Chem. Soc. 2003, 125, 10536. g) Q.-A. Chen, D.-S. Wang,
Y.-G. Zhou, Y. Duan, H.-J. Fan, Y. Yang, Z. Zhang, J. Am. Chem. Soc.
2011, 133, 6126.
We thank the National Natural Science Foundation of China
(21790332, 21521002 and 21473216) and CAS (QYZDJSSW-
SLH023) for financial support.
Conflict of interest
The authors declare no conflict of interest.
[8] a) H. Zhou, Z. Li, Z. Wang, T. Wang, L. Xu, Y. He, Q.-H. Fan, J. Pan, L. Gu,
A. S. C. Chan, Angew. Chem. Int. Ed. 2008, 47, 8464. b) T. Wang, L.-G.
Zhuo, Z. Li, F. Chen, Z. Ding, Y. He, Q.-H. Fan, J. Xiang, Z.-X. Yu, A. S. C.
Chan, J. Am. Chem. Soc. 2011, 133, 9878. c) J. Qin, F. Chen, Z. Ding, Y.-
M. He, L. Xu, Q.-H. Fan, Org. Lett. 2011, 13, 6568. d) F. Chen, Z. Ding, J.
Qin, T. Wang, Y. He, Q.-H. Fan, Org. Lett. 2011, 13, 4348. e) Z.-Y. Ding, T.
Wang, Y.-M. He, F. Chen, H.-F. Zhou, Q.-H. Fan, Q. Guo, A. S. C. Chan,
Adv. Synth. Catal. 2013, 355, 3727.
Keywords: cascade reactions • hydrogenation • reductive
amination • indolizidines • quinolizidines
[1] For recent reviews, see: a) J. W. Daly, J. Med. Chem. 2003, 46, 445. b) J.
W. Daly, T. F. Spande, H. M. Garraffo, J. Nat. Prod. 2005, 68, 1556. c) B.
Kang, P. Jakubec, D. J. Dixon, Nat. Prod. Rep. 2014, 31, 550. d) J. P.
Michael, Nat. Prod. Rep. 2007, 24, 191. e) J. P. Michael, Nat. Prod. Rep.
2008, 25, 139. f) J. P. Michael, Alkaloids Chem. Biol. 2016, 75, 1.
[9] a) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97. b) S.
Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am. Chem. Soc.
1995, 117, 7562. c) N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, R.
This article is protected by copyright. All rights reserved.