10.1002/anie.202004656
Angewandte Chemie International Edition
RESEARCH ARTICLE
oxytocin mimetic 9 with partial RP-HPLC chromatograms (214 nm) shown below for the pure starting material 3 and crude product 9. Dap = 2,3-diaminopropionic
acid, Dde = 1-(4,4-dimethyl-2,6-dioxacyclohexylidene)ethyl.
Wu, W. Sun, T.-P. Loh, Y. Jiang, Org. Lett. 2020; d) S. H. Yang,
Y. O. Hermant, P. W. Harris, M. A. Brimble, Eur. J. Org. Chem.
2020, 2020, 944-947; e) E. T. Williams, P. W. Harris, M. A.
Jamaluddin, K. M. Loomes, D. L. Hay, M. A. Brimble, Angew.
Chem., Int. Ed. 2018, 57, 11640-11643; f) M. A. Brimble, V. Yim,
I. Kavianinia, A. Cameron, P. Harrs, Org. Biomol. Chem. 2020.
[3] a) C. Kourra, N. Cramer, Chem. Sci. 2016, 7, 7007-7012; b) R.
Beard, A. Stucki, M. Schmitt, G. Py, C. Grundschober, A. D.
Gee, E. W. Tate, Bioorg. Med. Chem. 2018, 26, 3039-3045; c)
K. Aoki, M. Maeda, T. Nakae, Y. Okada, K. Ohya, K. Chiba,
Tetrahedron 2014, 70, 7774-7779; d) L. Liang, D. Astruc,
Coordination Chemistry Reviews 2011, 255, 2933-2945; e) Y. H.
Lau, P. De Andrade, Y. Wu, D. R. Spring, Chem. Soc. Rev.
2015, 44, 91-102.
[4] a) L. Peraro, T. Siegert, J. Kritzer, in Methods in enzymology,
Vol. 580, Elsevier, 2016, pp. 303-332; b) S. L. Kuan, T. Wang, T.
Weil, Chem. - Eur. J. 2016, 22, 17112-17129; c) G. L. Verdine,
G. J. Hilinski, in Methods in enzymology, Vol. 503, Elsevier,
2012, pp. 3-33; d) A. Gori, P. Gagni, S. Rinaldi, Chem. - Eur. J.
2017, 23, 14987-14995; e) C. M. Grison, G. M. Burslem, J. A.
Miles, L. K. Pilsl, D. J. Yeo, Z. Imani, S. L. Warriner, M. E. Webb,
A. J. Wilson, Chem. Sci. 2017, 8, 5166-5171; f) P. A. Szijj, C.
Bahou, V. Chudasama, Drug Discovery Today: Technol. 2018,
30, 27-34.
[5] a) Z. Dekan, I. Vetter, N. L. Daly, D. J. Craik, R. J. Lewis, P. F.
Alewood, J. Am. Chem. Soc. 2011, 133, 15866-15869; b) M.
Muttenthaler, A. Andersson, A. D. de Araujo, Z. Dekan, R. J.
Lewis, P. F. Alewood, J. Med. Chem. 2010, 53, 8585-8596.
[6] a) A. Abbas, B. Xing, T. P. Loh, Angew. Chem., Int. Ed. 2014,
53, 7491-7494; b) M. R. Jafari, J. Lakusta, R. J. Lundgren, R.
Derda, Bioconjugate Chem. 2016, 27, 509-514; c) P. Wadhwa,
A. Kharbanda, A. Sharma, Asian J. Org. Chem. 2018, 7, 634-
661; d) D. P. Nair, M. Podgorski, S. Chatani, T. Gong, W. Xi, C.
R. Fenoli, C. N. Bowman, Chem. Mater. 2014, 26, 724-744.
[7] L. Pedzisa, X. Li, C. Rader, W. R. Roush, Org. Biomol. Chem.
2016, 14, 5141-5147.
[8] a) X. Li, C. Rader, in Synthetic Antibodies, Springer, 2017, pp.
145-164; b) D. T. Cohen, C. Zhang, B. L. Pentelute, S. L.
Buchwald, J. Am. Chem. Soc. 2015, 137, 9784-9787; c) R.
Mousa, R. Notis Dardashti, N. Metanis, Angew. Chem., Int. Ed.
2017, 56, 15818-15827; d) S. S. Kulkarni, J. Sayers, B.
Premdjee, R. J. Payne, Nat. Rev. Chem. 2018, 2, 1-17; e) T.
Hofer, J. D. Thomas, T. R. Burke, C. Rader, Proc. Natl. Acad.
Sci. U. S. A. 2008, 105, 12451-12456; f) N. Nilchan, X. Li, L.
Pedzisa, A. R. Nanna, W. R. Roush, C. Rader, Antibody Ther.
2019, 2, 71-78.
Incubating crude peptide 3 under the same cyclisation conditions
for 5 min yielded cyclic peptide 9 as the major product (Figure
S2b), confirmed by modified acidic DTNB test of a small sample
(Figure S2c). The purified cyclic oxytocin analogue 9 could thus
be afforded in an overall 8.5% yield (based on the initial resin
loading) after a single one-step purification by RP-HPLC.
Conclusion
While the allenamide functionality has been reported to exhibit
rapid, chemoselective and irreversible reactivity with thiols, it has
thus far remained unexplored as a reactive functionality for
incorporation into peptides. As a result of a thorough optimisation
study, an efficient method for the on-resin synthesis of allenamidyl
peptides was developed. We further demonstrate this allenamide
platform as a powerful “click” chemistry strategy, affording
excellent conversions for the modification/lipidation of a model
peptide with a diverse range of alkyl and aryl thiols, and
additionally enabling the thia-Michael cyclisation of an oxytocin
analogue with quantitative conversion. Unlike many existing
peptide modification strategies, thia-Michael addition to an
allenamide occurs spontaneously without catalysis at near neutral
pH and can be implemented for both intramolecular bridging
reactions and heterologous conjugations. The allenamide is inert
to amine nucleophiles during the thia-Michael addition procedure
and the addition reaction is irreversible, thereby addressing
common drawbacks of haloacetamides and maleimides
respectively. The allenamide handle can be installed onto the
requisite peptide on-resin in a simple one step procedure with low-
cost off the shelf reagents, eliminating the need for building block
synthesis. Furthermore, installation of the allenamide handle onto
the free amino group of a resin bound peptide provides flexibility
to adjust the length of the bridging unit by using lysine isoteres
(e.g. ornithine) or incorporating additional amino-alkyl chains (e.g.
6-aminohexanoic acid). We envision allenamidyl peptides will find
future application in peptide lipidation or adjuvant conjugation,
disulfide bond replacement, peptide stapling, conjugation of
peptide-based payloads or reporters to proteins or antibodies and
as an electrophilic warhead in the development of irreversible
inhibitors of protein-protein interactions (PPIs).
[9] a) D. Chen, D. Guo, Z. Yan, Y. Zhao, MedChemComm 2018, 9,
244-253; b) J. B. Smaill, H. H. Showalter, H. Zhou, A. J. Bridges,
D. J. McNamara, D. W. Fry, J. M. Nelson, V. Sherwood, P. W.
Vincent, B. J. Roberts, J. Med. Chem. 2001, 44, 429-440.
[10]a) V. Pliska, J. Rudinger, T. Dousa, J. Cort, Am. J. Physiol.
1968, 215, 916-920; b) J. L. Stymiest, B. F. Mitchell, S. Wong, J.
C. Vederas, J. Org. Chem. 2005, 70, 7799-7809; c) J. Rudinger,
K. Jošt, Experientia 1964, 20, 570-571; d) J. L. Stymiest, B. F.
Mitchell, S. Wong, J. C. Vederas, Org. Lett. 2003, 5, 47-49; e) A.
D. De Araujo, M. Mobli, J. Castro, A. M. Harrington, I. Vetter, Z.
Dekan, M. Muttenthaler, J. Wan, R. J. Lewis, G. F. King, Nat.
Commun. 2014, 5, 1-12; f) L. Chen, I. Zoulíková, J. Slaninová,
G. Barany, J. Med. Chem. 1997, 40, 864-876.
Acknowledgements
A. J. Cameron thanks Lottery Health Research for a postdoctoral
Fellowship.
Keywords: Allenamide • Oxytocin • Click chemistry • Michael
addition • Allenes
[11]C. K. Riener, G. Kada, H. J. Gruber, Anal. Bioanal. Chem. 2002,
373, 266-276.
[1] a) J. L. Lau, M. K. Dunn, Bioorg. Med. Chem. 2018, 26, 2700-
2707; b) J. Rafferty, H. Nagaraj, A. P McCloskey, R. Huwaitat, S.
Porter, A. Albadr, G. Laverty, Curr. Med. Chem. 2016, 23, 4231-
4259; c) K. Fosgerau, T. Hoffmann, Drug discovery today 2015,
20, 122-128; dD. J. Drucker, Nat. Rev. Drug Discovery 2019;
eN. Diamantis, U. Banerji, Br. J. Cancer 2016, 114, 362-367.
[2] a) D. T. Cohen, C. Zhang, C. M. Fadzen, A. J. Mijalis, L. Hie, K.
D. Johnson, Z. Shriver, O. Plante, S. J. Miller, S. L. Buchwald,
Nat. chem. 2019, 11, 78-85; b) N. J. Smith, K. Rohlfing, L. A.
Sawicki, P. M. Kharkar, S. J. Boyd, A. M. Kloxin, J. M. Fox, Org.
Biomol. Chem. 2018, 16, 2164-2169; c) Y. Chen, W. Yang, J.
7
This article is protected by copyright. All rights reserved.