devoted to sulfide oxidation.8e,10 The action of a racemic
oxaziridinium on thioethers10c and the enantioselective sul-
foxidation of p-tolyl methyl sulfide, with moderate enantio-
selectivity, by chiral oxaziridiniums have been described.8e,10a,b
In a related but different reaction, the acid-promoted oxida-
tion of sulfides to sulfoxides by unactivated oxaziridines,10a,11
oxaziridinium-like intermediates are thought to be the active
species. Moderate enantioselectivities also resulted when
using chiral oxaziridines in this way.10a,11b
The development of new methods and reagents leading
to chiral sulfoxides with high enantioselectivity remains a
subject of both relevant synthetic and fundamental interest.
Thus, as part of our interest in oxaziridinium chemistry and
in the application of these reagents for asymmetric sulfoxi-
dation, we report herein on the synthesis of a newly
developed oxaziridinium salt and the oxidation of sulfides
with high enantioselectivities by this reagent.
substituent which is the weak point in this strategy. That
problem we found using the originally described reaction
conditions has also been pointed out by others.13
Thus, cholesterol 1 was protected as the tert-butyldiphen-
ylsilyl ether 1a14 using a standard protocol. The 5,6 double
bond was then oxidized in two steps. It was first epoxidized
at room temperature, and the resulting epoxides 1b (not
depicted in Scheme 1; mixture of diastereoisomers R/â in
ca. 2.7:1 molar ratio) were oxidized with the Jones reagent
at 50 °C.15 The (5,6-seco)-ketoacid 2, isolated in 60% yield
(56% from 1a), was converted to the acyl azide 2b through
the acid chloride 2a. The acyl azide moiety smoothly
rearranged into the isocyanate 2c on moderate heating, in
toluene. For the key step involving the cyclization of the
intermediate 2c leading to protected 6-azacholesterol 3, we
have established an alumina-promoted protocol. In our hands,
it proved more efficient than the silica gel induced pro-
tocol developed by Frye et al.13a for the purpose of preventing
the elimination of the 3-oxy substituent. Use of neutral
alumina shortened the reaction time with no need of heating.
Thus, the cyclization of 2c was performed at room temper-
ature, in 3 h, leading to 316 in 75% yield (62% from 2).
Hence, 3 was prepared from cholesterol 1 in 32% overall
yield.17
The oxaziridinium salt 5 was obtained in two steps from
the protected 6-azacholesterol 3 (Scheme 1). The synthesis
Scheme 1
(9) (a) Page, P. C. B.; Rassias, G. A.; Barros, D.; Ardakani, A.; Bethell,
D.; Merifield, E. Synlett 2002, 580-582. (b) Page, P. C. B.; Barros, D.;
Buckley, B. R.; Ardakani, A.; Marpless, B. A. J. Org. Chem. 2004, 69,
3595-3597. (c) Page, P. C. B.; Buckley, B. R.; Blacker, J. A. Org. Lett.
2004, 6 (10), 1543-1546. (d) Page, P. C. B.; Buckley, B. R.; Heaney, H.;
Blacker, J. A. Org. Lett. 2005, 7, 375-377. (e) Page, P. C. B.; Barros, D.;
Buckley, B. R.; Marples, B. A. A. J. Tetrahedron: Asymmetry 2005, 16,
3488-3491. (f) Page, P. C. B.; Buckley, B. R.; Barros, D.; Blacker, J. A.;
Heaney, H.; Marpless, B. A. Tetrahedron 2006, 62, 6607-6613. (g) Page,
P. C. B.; Buckley, B. R.; Rassias, G. A.; Blacker, J. A. Eur. J. Org. Chem.
2006, 803-813. (h) Minakata, S.; Takemiya, A.; Nakamura, K.; Ryu, I.;
Komatsu, M. Synlett 2000, 1810-1812. (i) Washington, I.; Houk, K. N. J.
Am. Chem. Soc. 2000, 122, 2948-2949. (j) Wong, M.-K.; Ho, L.-M.; Zheng,
Y.-S.; Ho, C.-Y.; Yang, D. Org. Lett. 2001, 3, 2587-2590. (k) Lacour, J.;
Monchaud, D.; Marsol, C. Tetrahedron Lett. 2002, 43, 8257-8260. (l)
Vachon, J.; Pe´rollier, C.; Monchaud, D.; Marsol, C.; Ditrich, K.; Lacour,
J. J. Org. Chem. 2005, 70, 5903-5911. (m) Gonc¸alves, M.-H.; Martinez,
A.; Grass, S.; Page, P. C. B.; Lacour, J. Tetrahedron Lett. 2006, 47, 5297-
5301. (n) Biscoe, M. R.; Breslow, R. J. Am. Chem. Soc. 2005, 127, 10812-
10813.
of 3 (R ) TBDPS) was performed from cholesterol 1
following a strategy already described12 for the synthesis of
6-azacholesterol and other 6-azasteroids but using where
necessary different reagents and conditions to improve yields
and essentially to overcome the elimination of the 3-oxy
(10) (a) Bohe´, L.; Lusinchi, M.; Lusinchi, X. Tetrahedron 1999, 55, 155-
166. (b) Gluszynska, A.; Mackowska, L.; Rozwadowska, M. D.; Sienniak,
W. Tetrahedron: Asymmetry 2004, 15, 2499-2505. (c) Hanquet, G.;
Lusinchi, X. Tetrahedron Lett. 1993, 34, 5299-3302.
(11) (a) Hanquet, G.; Lusinchi, X.; Milliet, P. Tetrahedron Lett. 1988,
29, 2817-2818. (b) Schoumacker, S.; Hamelin, O.; Te´ti, S.; Pe´caut, J.;
Fontecave, M. J. Org. Chem. 2005, 70, 301-308.
(12) (a) Lettre´, H.; Knof, L. Chem. Ber. 1960, 93, 2860-2864. (b) Lettre´,
H.; Mathes, K.; Wagner, M. Liebigs Ann. Chem. 1967, 703, 147-151.
(13) (a) Frye, S. V.; Haffner, C. D.; Maloney, P. R.; Mook, R. A., Jr.;
Dorsey, G. F., Jr.; Hiner, R. N.; Batchelor, K. W.; Branson, H. N.; Stuart,
J. D.; Schweiker, S. L.; Van Arnold, J.; Bickett, D. M.; Moss, M. L.; Tian,
G.; Unwalla, R. J.; Lee, F. W.; Tippin, T. K.; James, M. K.; Grizzle, M.
K.; Long, J. E.; Schuster, S. V. J. Med. Chem. 1993, 36, 4313-4315. (b)
Brown, L.; Lyall, W. J. S.; Suckling, C. J.; Suckling, K. E. J. Chem. Soc.,
Perkin Trans. I 1987, 595-599.
(8) (a) Hanquet, G.; Lusinchi, X.; Milliet, P. Tetrahedron Lett. 1988,
29, 3941-3944. (b) Hanquet, G.; Lusinchi, X.; Milliet, P. C. R. Acad. Sci.
Paris 1991, 313 (II), 625-628. (c) Hanquet, G.; Lusinchi, X. Tetrahedron
1997, 53, 13727-13738. (d) Poisson, D.; Cure, G.; Solladie´, G.; Hanquet,
G. Tetrahedron Lett. 2001, 42, 3745-3748. (e) Bohe´, L.; Hanquet, G.;
Lusinchi, M.; Lusinchi, X. Tetrahedron Lett. 1993, 34, 7271-7274. (f)
Bohe´, L.; Lusinchi, M.; Lusinchi, X. Tetrahedron 1999, 55, 141-154. (g)
Bohe´, L.; Kammoun, M. Tetrahedron Lett. 2002, 43, 803-805. (h) Bohe´,
L.; Kammoun, M. Tetrahedron Lett. 2004, 45, 747-751. (i) Aggarwal, V.
K.; Wang, H. F. J. Chem. Soc., Chem. Commun. 1996, 191-192. (j)
Armstrong, A.; Ahmed, G.; Garnett, I.; Goacolou, K. Synlett 1997, 1075-
1076. (k) Armstrong, A.; Draffan, A. G. Synlett 1998, 646-648. (l)
Armstrong, A.; Ahmed, G.; Garnett, I.; Goacolou, K.; Wailes, J. S.
Tetrahedron 1999, 55, 2341-2352. (m) Page, P. C. B.; Rassias, G. A.;
Bethell, D.; Schilling, M. B. J. Org. Chem. 1998, 63, 2774-2777. (n) Page,
P. C. B.; Rassias, G. A.; Barros, D.; Bethell, D.; Schilling, M. B. J. Chem.
Soc., Perkin Trans. 1 2000, 3325-3334. (o) Page, P. C. B.; Rassias, G. A.;
Barros, D.; Ardakani, A.; Buckley, B.; Bethell, D.; Smith, T. A. D.; Slawin,
M. A. Z. J. Org. Chem. 2001, 66, 6926-6931.
(14) Hardinger, S. A.; Wijaya, N. Tetrahedron Lett. 1993, 34, 3821-
3824.
(15) Gao, L. J.; Zhao, T. Z. Tetrahedron Lett. 1999, 40, 131-132.
(16) The formation of 3 from 2c was characterized by an upfield shift
in the 13C NMR signal of C5 from 216.6 ppm in 2c to 173.6 ppm in 3
indicating thereby the disappearance of the ketone and the formation of
the imine bond.
(17) The overall yield is strongly dependent on the Jones oxidation step,
in which yields ranging from 60 to 80% have been obtained mainly as a
function of the efficiency of the workup, including chromatographic
purification and subsequent crystallization of compound 2.
2266
Org. Lett., Vol. 9, No. 12, 2007