Page 9 of 11
Dalton Transactions
Please do not adjust margins
Journal Name
ARTICLE
3. A. K. Franz and S. O. Wilson, J. Med. Chem., 2013, 56, 388-405.
0°C. Triflic acid (8.0 mmol, 0.71 mL) was added and the reaction
mixture was stirred for 1 h at 0°C.
DOI: 10.1039/C9DT03058A
Int. Ed., 1998, 37, 812-814.
In a separate Schlenk flask, a 2.0 M solution of nBuLi (in
cyclohexane, 8.0 mmol, 4.0 mL) was added dropwise to a cooled
solution of 1,8-dibromonaphtalene (4.0 mmol, 1.1 g) in diethyl
ether, and the mixture was stirred for 10 min at -78°C and
another 10 min at 0oC. The 1,8-dilithionaphthalene solution was
added dropwise to 1,2-bis(triflate)-1,2-diphenyldisilane
solution at -78°C and stirred for 24 h at room temperature. The
resulting mixture was filtered through Florisil using diethyl
ether as an eluent. The filtrate was collected and the solvents
were removed under high vacuum (41% yield, crude). The
residue was dissolved and recrystallized using hexanes to obtain
a white crystalline product (36% yield). 1H NMR (400 MHz,
CDCl3): δ 8.69-8.67 (m, Ha4, 1H), δ 8.02-7.96 (m, Hb4/Hb5, 2H),
δ 7.85-7.83 (m, Hb2/Hb7, 2H), δ 7.80-7.77 (m, Ha5, Ha2/Ha7, 3H),
δ 7.61-7.55 (m, Ha3, Hb3/Hb6, 3H), δ 7.47-7.43 (m, Ha6, 1H), δ
7.36-7.11 (m, Ph-H[o,m,p], 20H), δ 5.59 (s, Si-H, 2H, JSi-H = 105.1
Hz). 13C{1H} NMR (100.6 MHz, CDCl3): δ 139.9 (s, Ca9), δ 138.8 (s,
Cb9), δ 135.7 (s, Ph[o(SiH2)]), δ 134.84 (s, Ca2/ Ca7/ Cb2/ Cb7), δ
133.1 (s, Ph[o(Si(ring)]), δ 132.4 (s, Ph(C)-SiH2), δ 130.0 (s, Ca10), δ
129.6 (s, Cb10), δ 128.6 (s, Ca1/ Ca8/ Cb1/ Cb8), δ 127.9 (s, Ph-
C[p]), δ 127.9 (s, Ph-C[m]), δ 126.7 (s, Ca4/ Ca5/ Cb4/ Cb5), δ
125.4 (s, Ca3/ Ca6/ Cb3/ Cb6), δ 124.9 (s, Ph(C)-Si(ring)).
29Si{1H}NMR (79.5 MHz, CDCl3): 5.1 ppm (s), -36.4 ppm (s). IR:
ⱱ, cm-1 3041 (arene), 2212, 2143 (Si-H), 1428 (Si-Ph), 1106 (Si-
Ph2), 760-690 (Si-Ph). CHN Anal. Calc. C32H24Si2.1/2H2O: C: 81.13,
H: 5.32. Found: C: 81.61, H: 5.20.
5. J. Wang, C. Ma, Y. Wu, R. A. Lamb, L. H. Pinto and W. F. DeGrado,
J. Am. Chem. Soc., 2011, 133, 13844-13847.
6. N. Fukaya, H. Haga, T. Tsuchimoto, S.-y. Onozawa, T. Sakakura
and H. Yasuda, J. Organomet. Chem., 2010, 695, 2540-2542.
7. H. Guo, X. Chen, C. Zhao and W. He, Chem. Comm., 2015, 51,
17410-17412.
8. K. Matyjaszewski, M. Cypryk, H. Frey, J. Hrkach, H. K. Kim, M.
Moeller, K. Ruehl and M. White, J. Macromol. Sci. A, 1991, 28,
1151-1176.
9. R. D. Miller and J. Michl, Chem. Rev., 1989, 89, 1359-1410.
10. T. D. Tilley, Acc. Chem. Res., 1993, 26, 22-29.
11. R. West, J. Organomet. Chem., 1986, 300, 327-346.
12. J. M. Zeigler, Mol. Cryst. Liq. Cryst., 1990, 190, 265-282.
13. M. Itazaki, K. Ueda and H. Nakazawa, Angew. Chem. Int. Ed.,
2009, 48, 3313-3316.
14. P. Magnus, J. Am. Chem. Soc., 2001, 123, 781-781.
15. E. E. Smith, G. Du, P. E. Fanwick and M. M. Abu-Omar,
Organometallics, 2010, 29, 6527-6533.
16. D. J. Harrison, D. R. Edwards, R. McDonald and L. Rosenberg,
Dalton Trans., 2008, 3401-3411.
17. E. M. Press, E. A. Marro, S. K. Surampudi, M. A. Siegler, J. A. Tang
and R. S. Klausen, Angew. Chem. Int. Ed., 2017, 56, 568-572.
18. M. Naito and M. Fujiki, Soft Matter, 2008, 4, 211-223.
19. A. Ohira, S.-Y. Kim, M. Fujiki, Y. Kawakami, M. Naito, G. Kwak and
A. Saxena, Chem. Comm., 2006, 2705-2707.
20. M. Shimada, M. Tsuchiya, R. Sakamoto, Y. Yamanoi, E. Nishibori,
K. Sugimoto and H. Nishihara, Angew. Chem. Int. Ed., 2016, 55,
3022-3026.
21. M. Shimada, Y. Yamanoi, T. Matsushita, T. Kondo, E. Nishibori, A.
Hatakeyama, K. Sugimoto and H. Nishihara, J. Am. Chem. Soc.,
2015, 137, 1024-1027.
Conflicts of interest
22. S. Surampudi, M. L. Yeh, M. A. Siegler, J. F. M. Hardigree, T. A.
Kasl, H. E. Katz and R. S. Klausen, Chem. Sci., 2015, 6, 1905-1909.
23. N. Suzuki, M. Fujiki, R. Kimpinde-Kalunga and J. R. Koe, J. Am.
Chem. Soc., 2013, 135, 13073-13079.
24. J. Zhou, S. K. Surampudi, A. E. Bragg and R. S. Klausen, Chem. Eur.
J., 2016, 22, 6204-6207.
25. M. Söldner, M. Sandor, A. Schier and H. Schmidbaur, Chem. Ber.,
1997, 130, 1671-1676.
26. R. Panisch, M. Bolte and T. Müller, Organometallics, 2007, 26,
3524-3529.
27. R. Schroeck, K. Angermaier, A. Sladek and H. Schmidbaur,
Organometallics, 1994, 13, 3399-3401.
28. M. Söldner, A. Schier and H. Schmidbaur, Inorg. Chem., 1997, 36,
1758-1763.
29. W. Takatsugu, K. Ryuji, A. Takeshi and A. Wataru, Bull. Chem. Soc.
Jpn., 1997, 70, 665-670.
30. M. A. G. M. Tinga, G. J. H. Buisman, G. Schat, O. S. Akkerman, F.
Bickelhaupt, W. J. J. Smeets and A. L. Spek, J. Organomet. Chem.,
1994, 484, 137-145.
There are no conflicts to declare
Acknowledgements
The work was supported by the School of Chemical Sciences,
University of Auckland, New Zealand. KRC and EML thank
L’Oréal Women in Science, Royal Society of New Zealand
Marsden Fast-Start grant and the MacDiarmid Institute for
financial support. This research was enabled in part by
calculation services provided by New Zealand e-Science
Infrastructure (NeSI). We thank Tatiana Groutso for collecting
the single crystal X-ray diffraction data. We would also like to
thank Paul Hume (Victoria University of Wellington) and Martijn
Wildervanck (University of Auckland) for help with the DFT
calculations.
Notes and references
‡ A control reaction of 1Ph and 1Me with H2O in the absence of
(C6F5)3B(OH2) did not yield 3Ph and 3Me, respectively.
31. H. J. Emeléus and M. Tufail, J. Inorg. Nucl.Chem., 1967, 29, 2081-
2084.
32. R. Panisch, M. Bolte and T. Müller, J. Am. Chem. Soc., 2006, 128,
9676-9682.
33. A. Feigl, I. Chiorescu, K. Deller, S. U. H. Heidsieck, M. R. Buchner,
V. Karttunen, A. Bockholt, A. Genest, N. Rösch and B. Rieger,
Chem. Eur. J., 2013, 19, 12526-12536.
34. J. Y. Corey, Adv. Organomet. Chem., 2004, 51, 1-52.
35. J. Y. Corey, Chem. Rev., 2011, 111, 863-1071.
1. W. Ando, T. Wakahara, T. Akasaka and S. Nagase,
Organometallics, 1994, 13, 4683-4685.
2. M. J. Barnes, R. Conroy, D. J. Miller, J. S. Mills, J. G. Montana, P.
K. Pooni, G. A. Showell, L. M. Walsh and J. B. H. Warneck,
Bioorganic Med. Chem. Lett., 2007, 17, 354-357.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins