Journal of the American Chemical Society
Page 4 of 5
C-C bond forming transition states is the result of both steric and
this work and M.D. thanks the Department of Chemistry and
1
2
3
4
5
6
7
8
electronic effects. The chiral counterion creates a spatial chiral
pocket to house 1H+. In addition, the electron deficient CF3
groups of catalyst (R)-H8-8g (and (R)-8g) induce significant C-H
bond- and π-π-aryl interactions that favor TS-3S over TS-3R.
Indeed, modeling of the C-C bond forming transition states with
catalyst 8a and 8g with aryl CH3 groups rather than aryl CF3
groups showed the expected decrease in stereoselectivity.
Biochemistry for an undergraduate research award.
REFERENCES
(1) (a) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.;
Garner, J.; Breuning, M. Angew Chem., Int Ed 2005, 44, 5384-5427. (b)
Wolf, C. In Dynamic Stereochemistry of Chiral Compounds: Principles
and Applications; RSC: Cambridge, UK, 2007, Ch. 3, 29-135. (c)
Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev.
2011, 111, 563-639.
(2) (a) Ojima, I. Catalytic Asymmetric Synthesis, 3rd Edition; Wiley:
Hoboken, NJ, 2010. (b) Busacca, C. A.; Fandrick, D. R.; Song, J. J.;
Senanayake, C. H. Adv. Synth. Catal. 2011, 353, 1825-1864. (c)
Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177-2250.
(3) (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155-
3211. (b) Kocovsky, P.; Vyskocil, S.; Smrcina, M. Chem. Rev. 2003,
103, 3213-3245. (c) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.
Comprehensive Asymmetric Catalysis; Springer: New York, 2004. (d)
Akiyama, T. Chem. Rev. 2007, 107, 5744-5758. (e) Blaser, H.-U.;
Federsel, H.-J. Asymmetric Catalysis On Industrial Scale: Challenges,
Approaches, And Solutions, 2nd Edition; Wiley-VCH: Weinheim, 2010.
(4) (a) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew
Chem., Int Ed 2009, 48, 6398-6401. (b) LaPlante, S. R.; Edwards, P. J.;
Fader, L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505-513.
(c) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke,
O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. J Med Chem 2011, 54,
7005-7022.
The investigated range of substrates include mostly symmet-
rical N,N'-biaryl hydrazines (entries 1-7, Table 3) that are substi-
tuted in their 3,3'-, 5,5'-, 6,6'- and 7,7'-positions.18,8b Both cata-
lyst, (R)-8g and (R)-H8-8g, were tested for each substrate and in
the case of 3,3’-disubstituted hydrazines the observed er values
were substantially different (entries 4, 6 and 7). Methoxy substit-
uents in the 3,3’-position significantly lowered the observed er
values (entries 4 & 5) while 5,5’- and 7,7’-di-methoxy hydrazines
afforded the corresponding biaryls with good er values (entries 2
& 3). It is noteworthy that the rearrangement of unsymmetrical
hydrazine 2h did not result in any enantioselectivity, which is in
agreement with the predicted TS.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In conclusion, we have successfully developed the first organo-
catalytic atroposelective synthesis of biaryl amines, exploiting a
facile [3,3]-rearrangement. BINOL-derived axially chiral phos-
phoric acid catalysts (R)-8g and (R)-H8-8g, featuring electron-
deficient CF3 groups, were found to be optimal in achieving high
product yields and good enantioselectivity. Using density func-
tional calculations of the C-C bond forming step, we can predict
the absolute configuration of the axially chiral biaryl products.
This approach also allows us to engage in the rational design of
more effective catalysts and explore related rearrangements. We
are in the process of expanding the scope of this powerful atro-
poselective method to unsymmetrical biaryl hydrazines. The axi-
ally chiral and structurally diverse biaryl products are expected to
find broad utility in asymmetric catalysis, drug discovery and
materials science.
(5) (a) Wallace, T. W. Org. Biomol. Chem. 2006, 4, 3197-3210. (b)
Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38,
3193-3207.
(6) (a) Bringmann, G.; Breuning, M.; Pfeifer, R.-M.; Schenk, W. A.;
Kamikawa, K.; Uemura, M. J Organomet Chem 2002, 661, 31-47. (b)
Tanaka, K. Chem.--Asian J. 2009, 4, 508-518. (c) Gustafson, J. L.; Lim,
D.; Miller, S. J. Science 2010, 328, 1251-1255. (d) Shen, X.; Jones, G.
O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L. J Am Chem Soc 2010,
132, 11278-11287. (e) Cozzi, P. G.; Emer, E.; Gualandi, A. Angew
Chem., Int Ed 2011, 50, 3847-3849. (f) Guo, F.; Konkol, L. C.;
Thomson, R. J. J Am Chem Soc 2011, 133, 18-20. (g) Mori, K.;
Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J.
Am. Chem. Soc. 2013, 135, 3964-3970.
(7) Our work on transition metal-free direct arylations involving
transient N,O-biaryl hydroxylamine intermediates has been recently
published: Gao, H.; Ess, D.H.; Yousufuddin, M; Kürti, L. J. Am. Chem.
Soc. 2013 (DOI: 10.1021/ja400897u).
(8) (a) Meisenheimer, J.; Witte, K. Ber. Dtsch. Chem. Ges. 1903, 36,
4153-4164. (b) Shine, H. J.; Trisler, J. C. J Am Chem Soc 1960, 82,
ASSOCIATED CONTENT
Supporting Information
Complete experimental procedures and charactetization data in-
1
cluding H and 13C NMR spectra and chiral HPLC traces. Full
reference 13b. This material is available free of charge via the
AUTHOR INFORMATION
4054-4058.
(c) Shine, H. J.; Gruszecka, E.; Subotkowski, W.;
Brownawell, M.; Filippo, J. S., Jr. J Am Chem Soc 1985, 107, 3218-3223.
(d) Shine, H. J.; Kupczyk-Subotkowska, L.; Subotkowski, W. J Am Chem
Soc 1985, 107, 6674-6678. (e) Lim, Y.-K.; Jung, J.-W.; Lee, H.; Cho, C.-
G. J Org Chem 2004, 69, 5778-5781. (f) Feng, Q.; Zhang, C.; Tang, Q.;
Luo, M. M. Chin Chem Lett 2009, 20, 1150-1152. (g) Lim, B.-Y.; Choi,
M.-K.; Cho, C.-G. Tetrahedron Lett 2011, 52, 6015-6017. (h) Suh, S.-E.;
Park, I.-K.; Lim, B.-Y.; Cho, C.-G. Eur. J. Org. Chem. 2011, 455-457,
S455/451-S455/460.
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(9) Sannicolo, F. Tetrahedron Lett 1985, 26, 119-120.
L.K. gratefully acknowledges the generous financial support
of the UT Southwestern Endowed Scholars in Biomedical Re-
search Program (W.W. Caruth, Jr, Endowed Scholarship in Bio-
medical Research), the Robert A. Welch Foundation (Grant I-
1764), the ACS Petroleum Research Fund (Doctoral New Investi-
gator Grant 51707-DNI1) and the American Cancer Society &
Simmons Cancer Center Institutional Research Grant (New Inves-
tigator Award in Cancer Research, ACS-IRG 02-196). A donation
of a 1220 Infinity LC by Agilent Technologies and a Chiralpak IE
column from Chiral Technologies Inc. (Daicel group) is also
greatly appreciated. We thank Dr. Ramakrishna Edupuganti for
the preparation of the initial batch 2-aminonaphthalene. D.H.E.
thanks BYU and the Fulton Supercomputing Lab for support of
(10) One likely explanation for the observed low enantioselectivity
(57.5:42.5 or 1.35:1 er) is that a simple optical resolution occurred due to
the presence of large quantities of (+)-CSA. The 57.5:42.5 er corresponds
to 15% ee, which was the value reported by Sannicolo (ref. 9).
(11) List et al. recently reported a SPINOL-phosphoric acid-catalyzed
asymmetric Fisher indolization reaction, see: Muller, S.; Webber, M. J.;
List, B. J. Am. Chem. Soc. 2011, 133, 18534.
(12) Upon rearrangement, N,N'-biaryl hydrazines that contain only
substituted benzene rings can give rise to a mixture of regioisomeric
biaryl products featuring 2,2', 2,4' and 4,4'-biaryl linkages. These biaryls
arise via [3,3], [3,5] and [5,5]-sigmatropic pathways, respectively. The
number of possible regioisomers is greatly reduced when the biaryl
hydrazines substrates are derived from fused aromatic systems, such as 2-
substituted naphthalenes. In these cases, the formation of only 1,1' and
1,3'-linked biaryls are expected via a [3,3]-pathway.
ACS Paragon Plus Environment