substituted R′-hydroxy 1,3-diketones,8 as pioneered by the work
of Smith and co-workers.9 While there are numerous alternative
strategies for 3(2H)-furanone synthesis,10 a particularly effective
approach is through transition metal-catalyzed 5-endo hetero-
cyclization of an alkenyl alcohol.11 In 2006, we reported the
construction of 3(2H)-furanones from 2-alkynyl-2-hydroxy
carbonyl compounds12 using catalytic amounts of PtCl2 as a
proton equivalent.13,14 This tandem reaction consisting of
heterocyclization and 1,2-migration is believed to proceed via
a cyclic oxonium ion intermediate.15 For example, reaction of
alkynyl carbonyl compound 1 with 5 mol % of PtCl2 in toluene
at 80 °C produced the 3(2H)-furanone 2 in good yield (93%)
(eq 1). Despite the synthetic value of this reaction, 3(2H)-
Synthesis of 4-Iodo-3-furanones Utilizing
Electrophile-Induced Tandem Cyclization/
1,2-Migration Reactions
Benedikt Crone and Stefan F. Kirsch*
Department Chemie, Technische UniVersita¨t Mu¨nchen,
Lichtenbergstrasse 4, D-85747 Garching, Germany
ReceiVed April 4, 2007
furanones bearing an additional substituent at C4 are not
accessible. A novel electrophile-induced tandem cyclization/
1,2-migration reaction of 2-alkynyl-2-silyloxy carbonyl com-
pounds is disclosed herein, which produces fully substituted
3(2H)-furanones containing an iodo substituent at C4. We also
report a AuCl3-catalyzed modification to enhance the scope of
accessible 4-iodo-3-furanones.
Two protocols for the construction of 4-iodo-3-furanones
through a sequence consisting of cyclization and 1,2-
migration of 2-alkynyl-2-silyloxy carbonyl compounds were
developed. In one, electrophilic cyclization is directly induced
by N-iodosuccinimide (NIS). In the second less limited
variant, AuCl3 catalyzes the tandem reaction in the presence
of NIS to provide highly substituted heterocycles in moderate
to excellent yields.
As an alternative to transition metal-catalyzed cyclizations
of unsaturated frameworks,16 electrophilic cyclizations have been
frequently utilized to construct a wide range of carbocycles and
(8) For synthetic equivalents of R′-hydroxy-1,3-diketones, see inter
alia: (a) Chimichi, S.; Boccalini, M.; Cosimelli, B.; Dall’Acqua, F.; Viola,
G. Tetrahedron 2003, 59, 5215. (b) Inoue, Y.; Ohuchi, K.; Imaizumi, S.
Tetrahedron Lett. 1988, 29, 5941. (c) Curran, D. P.; Singleton, D. H.
Tetrahedron Lett. 1983, 24, 2079.
(9) Smith, A. B., III; Levenberg, P. A.; Jerris, P. J.; Scarborough, R.
M., Jr.; Wovkulich, P. M. J. Am. Chem. Soc. 1981, 103, 1501.
(10) For selected examples, see: (a) Winkler, J. D.; Oh, K.; Asselin, S.
M. Org. Lett. 2005, 7, 387. (b) Sampson, P.; Roussis, V.; Drtina, G. J.;
Koerwitz, F. L.; Wiemer, D. F. J. Org. Chem. 1986, 51, 2525. (c) Sayama,
S. Heterocycles 2005, 65, 1347. (d) Kato, K.; Nouchi, H.; Ishikura, K.;
Takaishi, S.; Motodate, S.; Tanaka, H.; Okudaira, K.; Mochida, T.;
Nishigaki, R.; Shigenobu, K.; Akita, H. Tetrahedron Lett. 2006, 62, 2545.
(11) (a) Reiter, M.; Turner, H.; Mills-Webb, R.; Gouverneur, V. J. Org.
Chem. 2005, 70, 8478. (b) Baldwin, J. E.; Thomas, R. C.; Kruse, L. I.;
Silberman, L. J. Org. Chem. 1977, 42, 3846.
Polysubstituted 3(2H)-furanones are key structural elements
in many naturally occurring compounds such as geiparvarin,1
eremantholide A,2 and jatrophone.3 Moreover, a variety of
3(2H)-furanones are known to have pharmaceutical activity4
(e.g., inhibitory activity on COX-2,5 inhibitory activity on
MAO,6 and cytotoxic activity7 against tumor cells). Strategies
toward 3(2H)-furanones mainly utilize classical condensation
methods such as the acid-catalyzed cyclocondensation of
(1) (a) Jerris, P. J.; Smith, A. B., III. J. Org. Chem. 1981, 46, 577. (b)
Dreyer, D. L.; Lee, A. Phytochemistry 1972, 11, 763. (c) Lahey, F. N.;
MacLeod, J. K. Aust. J. Chem. 1967, 20, 1943.
(2) Le Quesne, P. W.; Levery, S. B.; Menachery, M. D.; Brennan, T. F.;
Raffauf, R. F. J. Chem. Soc., Perkin Trans. 1 1978, 1572.
(3) (a) Smith, A. B., III; Guaciaro, M. A.; Schow, S. R.; Wovkulich, P.
M.; Toder, B. H.; Hall, T. W. J. Am. Chem. Soc. 1981, 103, 219. (b)
Kupchan, S. M.; Sigel, C. W.; Matz, M. J.; Gilmore, C. J.; Bryan, R. F. J.
Am. Chem. Soc. 1976, 98, 2295.
(4) (a) Felman, S. W.; Jirkovsky, I.; Memoli, K. A.; Borella, L.; Wells,
C.; Russell, J.; Ward, J. J. Med. Chem. 1992, 35, 1183. (b) Togashi, M.;
Ozawa, S.; Abe, S.; Nishimura, T.; Tsuruga, M.; Ando, K.; Tamura, G.;
Kuwahara, S.; Ubukata, M.; Magae, J. J. Med. Chem. 2003, 46, 4113. (c)
Mack, R. A.; Zazulak, W. I.; Radov, L. A.; Baer, J. E.; Stewart, J. D.;
Elzer, P. H.; Kinsolving, C. R.; Georgiev, V. S. J. Med. Chem. 1988, 31,
1910.
(12) For the synthesis of 2-alkynyl-2-hydroxy carbonyl compounds,
see: (a) Kirsch, S. F. J. Org. Chem., 2005, 70, 10210. (b) Dhondi, P. K.;
Chisholm, J. D. Org. Lett. 2006, 8, 67.
(13) (a) Kirsch, S. F.; Binder, J. T.; Lie´bert, C.; Menz, H. Angew. Chem.,
Int. Ed. 2006, 45, 5878. (b) Binder, J. T.; Crone, B.; Kirsch, S. F.; Lie´bert,
C.; Menz, H. Eur. J. Org. Chem. 2007, 1636.
(14) For related cyclizations, see: (a) Liu, Y.; Liu, M.; Guo, S.; Tu, H.;
Zhou, Y.; Gao, H. Org. Lett. 2006, 8, 3445. (b) Smith, C. R.; Bunnelle, E.
M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169. (c) Hashmi, A. S.
K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000,
39, 2285. (d) Gul´ıas, M.; Rodr´ıguez, R.; Castedo, L.; Mascarenas, J. L.
Org. Lett. 2003, 5, 1975. (e) Marshall, J. A.; Sehon, C. A. J. Org. Chem.
1995, 60, 5966.
(5) Shin, S. S.; Byun, Y.; Lim, K. M.; Choi, J. K.; Lee, K.-W.; Moh, J.
H.; Kim, J. K.; Jeong, Y. S.; Kim, J. Y.; Choi, Y. H.; Koh, H.-J.; Park,
Y.-H.; Oh, Y. I.; Noh, M.-S.; Chung, S. J. Med. Chem. 2004, 47, 792.
(6) Carotti, A.; Carrieri, A.; Chimichi, S.; Boccalini, M.; Cosimelli, B.;
Gnerre, C.; Carotti, A.; Carrupt, P.-A.; Testa, B. Bioorg. Med. Chem. Lett.
2002, 12, 3551.
(15) For similar intermediates, see: (a) Yao, T.; Zhang, X.; Larock, R.
C. J. Org. Chem. 2005, 70, 7679. (b) Yao, T.; Zhang, X.; Larock, R. C. J.
Am. Chem. Soc. 2004, 126, 11164. (c) Patil, N. T.; Wu, H.; Yamamoto, Y.
J. Org. Chem. 2005, 70, 4531.
(16) For leading reviews, see: (a) Bruneau, C. Angew. Chem., Int. Ed.
2005, 44, 2328. (b) Me´ndez, M.; Mamane, V.; Fu¨rstner, A. Chemtracts
2003, 16, 397. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. ReV. 2004,
33, 431.
(7) Ishida, Y.; Tsuruta, H.; Tsuneta, S. T.; Uno, T.; Watanabe, K.; Aizono,
Y. Biosci. Biotechnol. Biochem. 1998, 62, 2146.
10.1021/jo070695n CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/08/2007
J. Org. Chem. 2007, 72, 5435-5438
5435