LETTER
Copper(II) Acetate Mediated Reactions of Methylenecyclopropane and Diphenyl Diselenide
1373
Interestingly, when the reaction was undertaken under In conclusion, we have found that the copper(II) acetate
heat instead of visible light, the result was quite different. mediated reactions of MCPs and diphenyl diselenide or
Under these conditions, b-elimination occurred on the diphenyl disulfide gave different results under different
intermediate 9 to give the phenylselenyl-substituted buta- reaction conditions. Under visible light irradiation, phen-
1,3-diene 11 (Scheme 4).
ylselenyl-substituted cyclobutenes were generated, while
under heating conditions, phenylselenyl- or phenyl-
sulfanyl-substituted buta-1,3-dienes were obtained. All of
these analogues are extremely useful in organic synthesis.
Further screening demonstrated that using less solvent
decreased the amount of solvent adduct and enhanced the
yield of 11a (Table 3, entry 2).
Table 3 Reaction of Diphenylmethylenecyclopropane (1a),
Acknowledgment
Diphenyl Diselenide and Copper(II) Acetate under Heata
This work was supported by the National Natural Science Founda-
tion of China (20332060, 20472072) and Academic Foundation of
Zhejiang Province.
Ph
Ph
Cu(OAc)2·H2O
+
(PhSe)2
110 °C
solvent, N2
Ph
PhSe
11a
Ph
1a
References and Notes
Entry
Solvent (volume)
HOAc (2 mL)
HOAc (0.2 mL)
–
Time (h)b Yield of 11a (%)c
(1) For the preparation of the MCPs, see: Brandi, A.; Goti, A.
Chem. Rev. 1998, 98, 589; and references cited therein.
(2) (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem.
Rev. 2003, 103, 1213. (b) Nakamura, I.; Yamamoto, Y. Adv.
Synth. Catal. 2002, 344, 111; and references cited therein.
(3) (a) Camacho, D. H.; Nakamura, I.; Saito, S.; Yamamoto, Y.
J. Org. Chem. 2001, 66, 270. (b) Tsukada, N.; Shibuya, A.;
Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119,
8123. (c) Nakamura, I.; Saito, S.; Yamamoto, Y. J. Am.
Chem. Soc. 2000, 122, 2661. (d) Nakamura, I.; Siriwardana,
A. I.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67,
3445. (e) Nakamura, I.; Itagaki, H.; Yamamoto, Y. J. Org.
Chem. 1998, 63, 6458. (f) Nakamura, I.; Oh, B. H.; Saito, S.;
Yamamoto, Y. Angew. Chem. Int. Ed. 2001, 40, 1298.
(g) Lautens, M.; Ren, Y.; Delanghe, P. H. M. J. Am. Chem.
Soc. 1994, 116, 8821. (h) Lautens, M.; Ren, Y. J. Am. Chem.
Soc. 1996, 118, 9597. (i) Lautens, M.; Ren, Y. J. Am. Chem.
Soc. 1996, 118, 10668. (j) Suginome, M.; Matsuda, T.; Ito,
Y. J. Am. Chem. Soc. 2000, 122, 11015. (k) Lautens, M.;
Meyer, C.; Lorenz, A. J. Am. Chem. Soc. 1996, 118, 10676.
(l) Bessmertnykh, A. G.; Blinov, K. A.; Grishin, Y. K.;
Donskaya, N. A.; Tveritinova, E. V.; Yur'eva, N. M.;
Beletskaya, I. P. J. Org. Chem. 1997, 62, 6069.
(4) (a) Shi, M.; Xu, B. Tetrahedron Lett. 2003, 44, 3839.
(b) Huang, J.; Shi, M. Tetrahedron Lett. 2003, 44, 9343.
(c) Shao, L.; Shi, M. Eur. J. Org. Chem. 2004, 426. (d) Shi,
M.; Xu, B. Org. Lett. 2002, 4, 2145. (e) Shi, M.; Chen, Y.;
Xu, B.; Tang, J. Tetrahedron Lett. 2002, 43, 8019. (f) Shi,
M.; Shao, L.; Xu, B. Org. Lett. 2003, 5, 579. (g) Xu, B.;
Shi, M. Org. Lett. 2003, 5, 1415.
(5) (a) Xu, B.; Chen, Y.; Shi, M. Tetrahedron Lett. 2002, 43,
2781. (b) Zhou, H.; Huang, X.; Chen, W. J. Org. Chem.
2004, 69, 5471. (c) Liu, L.; Shi, M. Chem. Commun. 2004,
2878. (d) Huang, X.; Yu, L. Synlett 2005, 2953. (e) Huang,
J.; Shi, M. J. Org. Chem. 2005, 70, 3859. (f) Yu, L.; Huang,
X.; Xie, M. Synlett 2006, 423. (g) Yu, L.; Huang, X. Synlett
2006, 2136.
1
2
3
4
2
2
3
6
42
68
10d
0
DMSO (2 mL)
a 1a (0.3 mmol), (PhSe)2 (0.3 mmol) and Cu(OAc)2 (0.3 mmol) were
employed.
b The reaction was monitored by TLC (eluent: PE).
c Isolated yields.
d Free-radical adduct 4a was obtained as the main product in 45%
yield.
Under the optimized conditions, a series of phenylselenyl-
substituted butadienes were synthesized (Table 4, entries
1–4).12 When diphenyl disulfide was employed, the corre-
sponding phenylsulfanyl-substituted 1,3-butadienes were
obtained (Table 4, entries 5–7). Buta-1,3-dienes are use-
ful building blocks in synthetic organic chemistry.13 Here,
we have developed a convenient method for the synthesis
of phenylselenyl- or phenylsulfanyl-substituted buta-1,3-
dienes.
Table 4 Synthesis of Phenylselenyl- or Phenylsulfanyl-Substituted
Buta-1,3-dienes
R
R
R
Cu(OAc)2·H2O
+
(PhY)2
110 °C
R
PhY
11
AcOH, N2
1
Entry
R
Y
Yield of 11 (%)a
68 (11a)
1
2
3
4
5
6
7
Ph (1a)
Se
Se
Se
Se
S
(6) (a) Kochi, J. K. J. Am. Chem. Soc. 1963, 85, 1958.
(b) Kochi, J. K.; Bemis, A. J. Am. Chem. Soc. 1968, 90,
4038. (c) Kochi, J. K.; Bemis, A.; Jenkins, C. L. J. Am.
Chem. Soc. 1968, 90, 4616. (d) Kochi, J. K. Free Radicals,
Vol. I; Wiley: New York, 1968, 591.
(7) For selected recent articles about cyclobutenes, see:
(a) Delas, C.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001,
123, 7937. (b) Tantillo, D. J.; Hoffmann, R. J. Am. Chem.
Soc. 2001, 123, 9855. (c) Winkler, J. D.; McLaughlin, E. C.
Org. Lett. 2005, 7, 227. (d) Murakami, M.; Usui, I.;
Hasegawa, M.; Matsuda, T. J. Am. Chem. Soc. 2005, 127,
1366. (e) Inanaga, K.; Takasu, K.; Ihara, M. J. Am. Chem.
p-FC6H4 (1b)
p-ClC6H4 (1c)
p-MeC6H4 (1d)
Ph (1a)
46 (11b)
40 (11c)
54 (11d)
63 (11e)
p-FC6H4 (1b)
p-MeC6H4 (1d)
S
48 (11f)
S
52 (11g)
a Isolated yields.
Synlett 2007, No. 9, 1371–1374 © Thieme Stuttgart · New York