Communication
ChemComm
donor–acceptor molecule 6u was synthesized from 4,40-diacetyl-
biphenyl and 2g via double (5+1) benzene ring formation. Using
4,40,400-triacetyltriphenylamine and 2b as starting materials, triple-
p-phenylene group formation was achieved to give the corres-
ponding C3 symmetric donor–acceptor molecule 6v. The reaction
of 1,3,5-triacetylbenzene with 2g also gave the C3 symmetric
donor–acceptor molecule 6w.
In conclusion, we have developed an efficient method for
synthesizing carbonyl-p-phenylene-p molecules from readily avail-
able methyl ketones and easily synthesized streptocyanines in one
pot. This convenient method was applied to the synthesis of
symmetric donor–acceptor molecules that have two or three such
linkages.
11 S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang and C. Adachi, Angew.
Chem., Int. Ed., 2014, 53, 6402–6406.
12 J. Luo and J. Zhang, J. Org. Chem., 2016, 81, 9131–9137.
13 (a) S. P. Stanforth, Tetrahedron, 1998, 54, 263–303; (b) J. Hassan,
´
M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire, Chem. Rev., 2002,
102, 1359–1469.
14 (a) N. O. Calloway, Chem. Rev., 1935, 17, 327–392; (b) P. H. Gore,
Chem. Rev., 1955, 55, 229–281.
15 (a) S. Balasubramaniam and I. S. Aidhen, Synthesis, 2008, 3707–3738;
(b) V. Pace, W. Holzer and B. Olofsson, Adv. Synth. Catal., 2014, 356,
3697–3736.
16 X.-F. Wu, H. Neumann and M. Beller, Chem. Soc. Rev., 2011, 40,
4986–5009.
17 (a) S. Saito and Y. Yamamoto, Chem. Rev., 2000, 100, 2901–2915;
(b) T. R. Hoye, B. Baire, D. Niu, P. H. Willoughby and B. P. Woods,
Nature, 2012, 490, 208–212; (c) A. Link and C. Sparr, Chem. Soc. Rev.,
2018, 47, 3804–3815.
18 (a) T. Zimmermann and G. W. Fischer, J. Prakt. Chem., 1987, 329,
This research was partially supported by the MEXT-supported
program for the Strategic Research Foundation at Private
Universities and the Moritani Scholarship Foundation.
¨
975–984; (b) J. Steinbach, P. Mading, F. Fu¨chtner and B. Johannsen,
J. Labelled Compd. Radiopharm., 1995, 36, 33–41; (c) S. P. Gromov
and N. A. Kurchavov, Eur. J. Org. Chem., 2002, 4123–4126; (d) X. Bi,
D. Dong, Q. Liu, W. Pan, L. Zhao and B. Li, J. Am. Chem. Soc., 2005,
127, 4578–4579; (e) S. S. B. Daniels, J. M. Brown, M. Gayral, Y. Xu
and M. I. Stewart, Synlett, 2009, 1387–1390; ( f ) Z. Fu, M. Wang,
Y. Dong, J. Liu and Q. Liu, J. Org. Chem., 2009, 74, 6105–6110;
(g) G. Ohlendorf, C. W. Mahler, S.-S. Jester, G. Schnakenburg,
Conflicts of interest
There are no conflicts to declare.
¨
S. Grimme and S. Hoger, Angew. Chem., Int. Ed., 2013, 52,
12086–12090; (h) H.-Y. Zhao, F.-S. Wu, L. Yang, Y. Liang, X.-L. Cao,
H.-S. Wang and Y.-M. Pan, RSC Adv., 2018, 8, 4584–4587; (i) G. Liang,
J. Rong, W. Sun, G. Chen, Y. Jiang and T.-P. Loh, Org. Lett., 2018, 20,
7326–7331.
Notes and references
1 Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi and
M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915–1016.
2 (a) G. Wenz, B.-H. Han and A. Mu¨ller, Chem. Rev., 2006, 106,
782–817; (b) D. B. Amabilino, D. K. Smith and J. W. Steed, Chem.
Soc. Rev., 2017, 46, 2404–2420.
3 A. K. Ghosh and S. Gemma, Structure-based Design of Drugs and Other
Bioactive Molecules: Tools and Strategies, Wiley, New York, 2014.
19 For (5+1) annulation reactions constructing 6-membered carbocycles,
see (a) W. M. Akhtar, R. J. Armstrong, J. R. Frost, N. G. Stevenson and
T. J. Donohoe, J. Am. Chem. Soc., 2018, 140, 11916–11920;
(b) P. V. Chouthaiwale and F. Tanaka, Chem. Commun., 2014, 50,
14881–14884.
¨
20 C. Jutz, R.-W. Wargner, A. Kraatz and H.-G. Lobering, Liebigs Ann.
´
4 F. A. A. Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tome, J. A. S.
Chem., 1975, 874–900.
Cavaleiro and J. Rocha, Chem. Soc. Rev., 2012, 41, 1088–1110.
5 (a) S. I. Yang, R. K. Lammi, J. Seth, J. A. Riggs, T. Arai, D. Kim,
D. F. Bocian, D. Holten and J. S. Lindsey, J. Phys. Chem. B, 1998, 102,
9426–9436; (b) L. Yu and J. Lindsey, Tetrahedron, 2001, 57, 9285–9298.
21 (a) S. E. Steinhardt, J. S. Silverston and C. D. Vanderwal, J. Am. Chem.
Soc., 2008, 130, 7560–7561; (b) R. S. Paton, S. E. Steinhardt,
C. D. Vanderwal and K. N. Houk, J. Am. Chem. Soc., 2011, 133,
3895–3905.
6 (a) M. Taniguchi and J. S. Lindsey, Tetrahedron, 2010, 66, 5549–5565; 22 (a) I. W. Davies, J.-F. Marcoux, J. T. Kuethe, M. D. Lankshear,
(b) S. Nishizawa, J.-y. Hasegawa and K. Matsuda, Chem. Phys. Lett.,
2013, 555, 187–190.
7 E. R. T. Tiekink and J. Zukerman-Schpector, The Importance of
Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering,
Wiley, New York, 2012.
8 D. R. Davies, B. Mamat, O. T. Magnusson, J. Christensen, M. H.
Haraldsson, R. Mishra, B. Pease, E. Hansen, J. Singh, D. Zembower,
H. Kim, A. S. Kiselyov, A. B. Burgin, M. E. Gurney and L. J. Stewart,
J. Med. Chem., 2009, 52, 4694–4715.
J. D. O. Taylor, N. Tsou, P. G. Dormer and D. L. Hughes, J. Org.
Chem., 2004, 69, 1298–1308; (b) L. Viteva, T. Gospodova,
`
Y. Stefanovsky, K. Petrova, I. Timtcheva, M.-R. Mazieres and
J.-G. Wolf, Eur. J. Org. Chem., 2004, 385–394; (c) L. Bianchi,
C. Dell’Erba, M. Maccagno, G. Petrillo, E. Rizzato, F. Sancassan,
E. Severi and C. Tavani, J. Org. Chem., 2005, 70, 8734–8738;
(d) M. R. Tatton, I. Simpson and T. J. Donohoe, Org. Lett., 2014,
16, 1920–1923; (e) X. Li, H. Yu and Y. Huang, Adv. Synth. Catal.,
2017, 359, 1379–1387.
9 Y. Qi, Y. Wang, Y. Yu, Z. Liu, Y. Zhang, Y. Qi and C. Zhou, J. Mater. 23 (a) I. Yamaguchi, S. Shingai and M. Sato, Macromolecules, 2008, 41,
Chem. C, 2016, 4, 11291–11297.
10 M.-A. Tehfe, F. Dumur, B. Graff, F. Morlet-Savary, D. Gigmes,
6292–6298; (b) A. Colombo, C. Dragonetti, S. Righetto, D. Roberto,
`
A. Valore, T. Benincori, F. Colombo and F. Sannicolo, J. Mater.
´
J.-P. Fouassier and J. Lalevee, Polym. Chem., 2013, 4, 2313–2324.
Chem., 2012, 22, 19761–19766.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019